Intermediate
30 min

Confidently separate and protect your I2C devices using ADUM2250 and STM32F407VGT6

Protect and connect: Your trusted I2C isolation solution!

I2C Isolator 6 Click with Clicker 4 for STM32F4

Published Dec 29, 2023

Click board™

I2C Isolator 6 Click

Dev.Board

Clicker 4 for STM32F4

Compiler

NECTO Studio

MCU

STM32F407VGT6

Ensure the integrity of your I2C communication by isolating and safeguarding your signals from external influences

A

A

Hardware Overview

How does it work?

I2C Isolator 6 Click is based on the ADUM2250, a two-channel, 5kVRMS I2C digital isolator from Analog Devices, suitable for hot-swap applications. The ADUM2250 bidirectionally buffers the two I2C signals across the isolation barrier while providing 5kVRMS of galvanic isolation. It transfers digital signals with data rates up to 1MHz between circuits with different power domains at ambient temperatures. It offers glitch-free operation,

excellent reliability, and a long operational life. The wide temperature range and high isolation voltage make the device ideal for harsh industrial environments. This Click board™ also possesses two terminals labeled as VIN and SDA/SCL at the top of the Click board™, where VIN represents the isolated-side power supply of the isolator, while the other corresponds to the isolated bidirectional logic-bus terminal. This Click board™ can

operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

I2C Isolator 6 Click hardware overview image

Features overview

Development board

Clicker 4 for STM32F4 is a compact development board designed as a complete solution that you can use to quickly build your own gadgets with unique functionalities. Featuring an STM32F407VGT6 MCU, four mikroBUS™ sockets for Click boards™ connectivity, power management, and more, it represents a perfect solution for the rapid development of many different types of applications. At its core is an STM32F407VGT6 MCU, a powerful microcontroller by STMicroelectronics based on the high-performance

Arm® Cortex®-M4 32-bit processor core operating at up to 168 MHz frequency. It provides sufficient processing power for the most demanding tasks, allowing Clicker 4 to adapt to any specific application requirements. Besides two 1x20 pin headers, four improved mikroBUS™ sockets represent the most distinctive connectivity feature, allowing access to a huge base of Click boards™, growing on a daily basis. Each section of Clicker 4 is clearly marked, offering an intuitive and clean interface. This makes working with the

development board much simpler and, thus, faster. The usability of Clicker 4 doesn’t end with its ability to accelerate the prototyping and application development stages: it is designed as a complete solution that can be implemented directly into any project, with no additional hardware modifications required. Four mounting holes [4.2mm/0.165”] at all four corners allow simple installation by using mounting screws.

Clicker 4 for STM32F4 double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

10

Silicon Vendor

STMicroelectronics

Pin count

100

RAM (Bytes)

100

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB10
SCL
I2C Data
PB11
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

I2C Isolator 6 Click Schematic schematic

Step by step

Project assembly

Clicker 4 for STM32F4 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 4 for STM32F4 as your development board.

Clicker 4 for STM32F4 front image hardware assembly
LTE IoT 5 Click front image hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Clicker 4 STM32F4 Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for I2C Isolator 6 Click driver.

Key functions:

  • i2cisolator6_write - I2C Isolator 6 I2C writing function

  • i2cisolator6_read - I2C Isolator 6 I2C reading function

  • i2cisolator6_write_then_read - I2C Isolator 6 I2C write then read function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief I2C Isolator 6 Click example
 *
 * # Description
 * This library contains API for the I2C Isolator 6 Click driver.
 * This demo application shows an example of an I2C Isolator 6 Click 
 * wired to the Accel 21 Click for reading device ID.
 * The library also includes an I2C writing and reading functions.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * The initialization of the I2C module, log UART.
 * After the driver init, the app sets Accel 21 Click I2C Slave address.
 *
 * ## Application Task
 * This example demonstrates the use of the I2C Isolator 6 Click board™.
 * Logs device ID values of the Accel 21 Click 
 * wired to the I2C Isolator 6 Click board™.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "i2cisolator6.h"

#define ACCEL21_DEVICE_ADDRESS_GND    0x18
#define ACCEL21_DEVICE_ADDRESS_VCC    0x19
#define ACCEL21_REG_WHO_AM_I          0x0F
#define ACCEL21_DEVICE_ID             0x33

static i2cisolator6_t i2cisolator6;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    i2cisolator6_cfg_t i2cisolator6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    i2cisolator6_cfg_setup( &i2cisolator6_cfg );
    I2CISOLATOR6_MAP_MIKROBUS( i2cisolator6_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == i2cisolator6_init( &i2cisolator6, &i2cisolator6_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    
    if ( I2CISOLATOR6_ERROR == i2cisolator6_set_slave_address( &i2cisolator6, ACCEL21_DEVICE_ADDRESS_GND ) )
    {
        log_error( &logger, " Set I2C Slave address ERROR." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------\r\n" );
}

void application_task ( void ) 
{
    static uint8_t device_id = 0;
    static uint8_t reg = ACCEL21_REG_WHO_AM_I;
    if ( I2CISOLATOR6_OK == i2cisolator6_write_then_read( &i2cisolator6, &reg, 1, &device_id, 1 ) )
    {
        if ( ACCEL21_DEVICE_ID == device_id )
        {
            log_printf( &logger, " Device ID: 0x%.2X\r\n", ( uint16_t ) device_id );
            log_printf( &logger, "---------------------\r\n" );
        }
    }
    Delay_ms( 1000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources