Beginner
10 min

Manage various sensors and actuators with our I2C adapter and PIC18F25K42

One Click to rule them all: Uniting devices on a single bus

8-pin I2C Click with Curiosity HPC

Published Jan 23, 2024

Click board™

8-pin I2C Click

Dev Board

Curiosity HPC

Compiler

NECTO Studio

MCU

PIC18F25K42

This innovative product unlocks new possibilities in I2C connectivity, inspiring users to explore and unleash the full potential of 8-pin connections, fostering innovation and creativity in electronics projects.

A

A

Hardware Overview

How does it work?

8-pin I2C Click is an adapter Click board™ that simplifies the connection of add-on boards to the mikroBUS™ socket. This Click board™ represents a small-size PCB that can be connected to the mikroBUS™ socket like any other Click board™, with a 2x4 female header placed on itself. Each header pin corresponds to a pin on the mikroBUS™ socket, such as I2C lines (SCL, SDA) with two jumpers for I2C lines pull-up function selection, 3V3 power supply, and ground. This Click board™ allows easy pin access and manipulation while always retaining a perfect connection

quality. Being compatible with Apple's MFI is the most important feature of the 8-pin I2C Click board™, which ensures its proper operation with additional Apple accessories. The name is a shortened version of the long-form Made for iPod, the original program that ultimately became MFI which refers to peripherals that work with Apple's iPod, iPad, and iPhone. 8-pin I2C Click communicates with MCU using the standard I2C 2-Wire interface. Lines of the mikroBUS™ to which this Click board™ is attached are shared through the top 8-pin female header, which mirrors

the pins of the connected mikroBUS™ socket. The 8-pin I2C Click also shares the 3V3 power rails, making it compatible with other power-compatible Click board™ and development systems. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

8-pin-i2c-click-hardware-overview

Features overview

Development board

Curiosity HPC, standing for Curiosity High Pin Count (HPC) development board, supports 28- and 40-pin 8-bit PIC MCUs specially designed by Microchip for the needs of rapid development of embedded applications. This board has two unique PDIP sockets, surrounded by dual-row expansion headers, allowing connectivity to all pins on the populated PIC MCUs. It also contains a powerful onboard PICkit™ (PKOB), eliminating the need for an external programming/debugging tool, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, a set of indicator LEDs, push button switches and a variable potentiometer. All

these features allow you to combine the strength of Microchip and Mikroe and create custom electronic solutions more efficiently than ever. Each part of the Curiosity HPC development board contains the components necessary for the most efficient operation of the same board. An integrated onboard PICkit™ (PKOB) allows low-voltage programming and in-circuit debugging for all supported devices. When used with the MPLAB® X Integrated Development Environment (IDE, version 3.0 or higher) or MPLAB® Xpress IDE, in-circuit debugging allows users to run, modify, and troubleshoot their custom software and hardware

quickly without the need for additional debugging tools. Besides, it includes a clean and regulated power supply block for the development board via the USB Micro-B connector, alongside all communication methods that mikroBUS™ itself supports. Curiosity HPC development board allows you to create a new application in just a few steps. Natively supported by Microchip software tools, it covers many aspects of prototyping thanks to many number of different Click boards™ (over a thousand boards), the number of which is growing daily.

Curiosity HPC double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RC3
SCL
I2C Data
RC4
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

8-pin I2C Click Schematic schematic

Step by step

Project assembly

Curiosity HPC front no-mcu image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity HPC as your development board.

Curiosity HPC front no-mcu image hardware assembly
LTE Cat.1 2 Click front image hardware assembly
MCU DIP 28 hardware assembly
Prog-cut hardware assembly
LTE Cat.1 2 Click complete accessories setup image hardware assembly
Curiosity HPC Access 28pin-DIP - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for 8-pin I2C Click driver.

Key functions:

  • c8pini2c_generic_write - Generic write function.

  • c8pini2c_generic_read - Generic read function.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief 8pinI2c Click example
 * 
 * # Description
 * This demo example reads temperature detected by Surface temp click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and configures a Surface temp click board.
 * 
 * ## Application Task  
 * Reads the temperature detected by Surface temp click board and 
 * logs it on the USB UART each second.
 * 
 * @note
 * In order to run this example successfully, a Surface temp click board needs to be 
 * connected properly to an 8-pin I2C click board.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "c8pini2c.h"

// ------------------------------------------------------------------ VARIABLES

static c8pini2c_t c8pini2c;
static log_t logger;

// Surface temp click - example
#define SURFACE_TEMP_DEVICE_SLAVE_ADDRESS 0x48
#define SURFACE_TEMP_REG_SOFT_RESET       0x2F
#define SURFACE_TEMP_REG_ID               0x0B
#define SURFACE_TEMP_REG_CONFIG           0x03
#define SURFACE_TEMP_REG_TEMP_MSB         0x00

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void surfacetemp_soft_reset (  )
{
    uint8_t tx_data;

    tx_data = SURFACE_TEMP_REG_SOFT_RESET;

    c8pini2c_generic_write ( &c8pini2c, SURFACE_TEMP_DEVICE_SLAVE_ADDRESS, 
                                        0, &tx_data, 1 );
}

uint8_t surfacetemp_setup (  )
{
    uint8_t tmp;

    surfacetemp_soft_reset( );
    Delay_100ms( );
    c8pini2c_generic_read( &c8pini2c, SURFACE_TEMP_DEVICE_SLAVE_ADDRESS, 
                                      SURFACE_TEMP_REG_ID, &tmp, 1 );

    if ( tmp != 0xCB )
    {
        return 1;
    }
    tmp = 0x93;
    c8pini2c_generic_write( &c8pini2c, SURFACE_TEMP_DEVICE_SLAVE_ADDRESS, 
                                       SURFACE_TEMP_REG_CONFIG, &tmp, 1 );

    return 0;
}

float surfacetemp_get_temperature (  )
{
    uint8_t rx_buff[ 2 ];
    int16_t temp;
    float temperature;

    c8pini2c_generic_read( &c8pini2c, SURFACE_TEMP_DEVICE_SLAVE_ADDRESS, 
                                      SURFACE_TEMP_REG_TEMP_MSB, &rx_buff[ 0 ], 2 );

    temp = rx_buff[ 0 ];
    temp <<= 8;
    temp |= rx_buff[ 1 ];
    temp &= 0xFFF8;

    temperature = (float)(temp);
    temperature *= 0.0078;

    return temperature;
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    c8pini2c_cfg_t cfg;

    uint8_t status;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c8pini2c_cfg_setup( &cfg );
    C8PINI2C_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c8pini2c_init( &c8pini2c, &cfg );

    status = surfacetemp_setup( );
    if ( status == 0 )
    {
        log_printf( &logger, "--- INIT DONE --- \r\n" );
    }
    else
    {
        log_printf( &logger, "--- INIT ERROR --- \r\n" );
        for( ; ; );
    }
}

void application_task ( void )
{
    float temperature;

    temperature = surfacetemp_get_temperature( );
    log_printf( &logger, "> Temperature : %.2f Celsius\r\n", temperature );
    Delay_ms( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources