Enhance user experiences in consumer electronics by employing FRAM for rapid boot times, seamless application responsiveness, and data retention in power-off states.
A
A
Hardware Overview
How does it work?
Excelon-LP Click is based on the CY15B108Q, a serial ferroelectric (FRAM) module with 8Mbit density made by Infineon. It contains 1024 KB of available memory space. This memory module is manufactured using ferroelectric technology, which has many advantages over conventional technologies for manufacturing conventional EEPROM and FLASH memory modules. Ferroelectric technology is still being developed and perfected, but the main advantages have already been demonstrated. This technology exploits the properties of ferroelectric materials to retain the electric field after exposure, the same way the ferromagnetic materials retain the magnetic field. This phenomenon is employed to polarize the FRAM cells and store the information. One area that still needs improvement is the thermal instability, especially at high temperatures. When the ferroelectric material reaches the Curie temperature, its properties are degraded. Therefore, exposure to high temperatures might damage the content of the FRAM module. This is illustrated by the data retention period in the datasheet: while working at 85˚C, the data retention period is reduced to 10 years. At 65˚C, the data retention period is over 150 years. Still, combined with the endurance of 1014 read/write cycles at bus write speed, this type of memory still represents an ideal solution for applications that must do frequent writing to the non-volatile memory locations. Excelon LP click uses the SPI communication protocol, allowing fast serial clock rates. The device employs certain protection mechanisms to ensure reliable data
transactions and avoid accidental writing to the memory array. The WEL bit must be set before writing any data to the IC, which modifies registers or the array itself. This bit is cleared after or during every memory modification instruction. Therefore, every memory modification instruction must be prefixed with the Write Enable (WREN) instruction that sets this bit to 1. This mechanism ensures that only the intended write instruction will be executed. The host MCU initiates Communication with the device, which drives the chip select pin (#CS on the schematic) to a LOW logic level. This pin is routed to the mikroBUS™ CS pin. The next byte of information can be either command or data. Usually, the first byte is the instruction (command) followed by the memory address. Depending on the command sent, either the memory is written to or read from the specific memory address. The memory address on this device is 20-bit (0x000000 to 0x0FFFFF), and therefore, it is sent by 3 bytes. Several instruction codes can be sent after the CS pin is driven to a LOW logic level. These include Write Enable, Write to the memory array, Read from the memory array, Write Status Register, Read Status Register, and so on. For a full list of commands and their detailed description, please refer to the datasheet of the CY15B108Q IC. When using the write-to-array instruction, it is possible to write the whole array while keeping the CS line to a LOW logic level, as the internal address pointer will increase with each received byte of data once the end of the array is reached (address 0x0FFFFF), the internal pointer will rollover from the beginning
(0x000000). An obvious advantage over the traditional EEPROM can be observed here: on a traditional EEPROM, the memory is organized in pages, usually 256 bytes long, which allows buffering of the data because of the inherently slow write operation. The FRAM memory does not use pages because the memory is written faster than the SPI bus can deliver new information (the data is written at bus speed). Therefore, no buffering is required, and the whole array can be sequentially written. The CY15B108Q includes the option to write-protect specific parts or the whole memory array. The write protection mechanism consists of two bits in the Status Register (BP0, BP1). The Write Status Register instruction can set or reset these bits. BP0 and BP1 bits control the write-protect status of the memory array (from one-quarter to full memory array protection). These bits are non-volatile, and their state is retained between the power cycles. The #WP pin is used to lock the Status Register. When this pin is driven to a LOW level, no further modifications to the Status register are possible, and the instructions used to change bits in this register (Write Enable and Write Status Register) are completely ignored. Driving this pin to a LOW state effectively acts as the hardware memory write-protect lock mechanism. The WPEN bit of the status register can completely turn off this pin: if the WPEN bit is cleared (0), this pin will not affect the CY15B108Q IC. The #WP pin is routed to the mikroBUS™ PWM pin.
Features overview
Development board
PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive
mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI
GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC
MCU Memory (KB)
128
Silicon Vendor
Microchip
Pin count
48
RAM (Bytes)
8196
You complete me!
Accessories
Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Excelon-LP Click driver.
Key functions:
excelonlp_send_command
- Functions for send opcode commandexcelonlp_read_data
- Functions for read dataexcelonlp_write_memory_data
- Functions for write data to memory
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief ExcelonLP Click example
*
* # Description
* This application writes in RAM memory and read from RAM memory.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes Device init
*
* ## Application Task
* Reads device ID, writes 6-bytes (MikroE) to memory and reads 6-bytes from memory
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "excelonlp.h"
// ------------------------------------------------------------------ VARIABLES
static excelonlp_t excelonlp;
static log_t logger;
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( void )
{
uint8_t out_buf[ 20 ] = { 0 };
uint8_t cnt;
log_cfg_t log_cfg;
excelonlp_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
excelonlp_cfg_setup( &cfg );
EXCELONLP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
excelonlp_init( &excelonlp, &cfg );
log_printf( &logger, "Read Device ID: " );
excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
excelonlp_read_data( &excelonlp, EXCELONLP_OPCODE_READ_DEVICE_ID, out_buf, 9 );
for ( cnt = 0; cnt < 9; cnt++ )
{
log_printf( &logger, " 0x%x - ", out_buf[ cnt ] );
Delay_100ms();
}
log_printf( &logger, "\r\n" );
}
void application_task ( )
{
uint8_t cnt;
char memory_data[ 3 ];
uint8_t send_buffer[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
uint32_t memory_address = 0x00000055;
log_printf( &logger, "Write MikroE data.\r\n" );
excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
for ( cnt = 0; cnt < 6; cnt++ )
{
excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
excelonlp_write_memory_data( &excelonlp, EXCELONLP_OPCODE_WRITE_MEMORY_DATA, memory_address++, send_buffer[ cnt ] );
Delay_100ms();
}
memory_address = 0x00000055;
log_printf( &logger, "Read memory data: " );
for ( cnt = 0; cnt < 6; cnt++ )
{
memory_data[ cnt ] = excelonlp_read_memory_data( &excelonlp, EXCELONLP_OPCODE_READ_MEMORY_DATA, memory_address++ );
log_printf( &logger, " %c", memory_data[ cnt ] );
Delay_100ms();
}
log_printf( &logger, "\r\n \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END