Intermediate
30 min

The best available custom ADC solution with ADS131M02 and ATmega328

Go digital with ADC!

ADC 15 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

ADC 15 Click

Dev Board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328

Discover what our advanced ADC can do for your engineering solutions – check it out now!

A

A

Hardware Overview

How does it work?

ADC 15 Click is based on the ADS131M02, a low-power, two-channel, simultaneously sampling, 24-bit, delta-sigma (ΔΣ) analog-to-digital converter (ADC) with a low-drift internal reference voltage from Texas Instruments. The dynamic range, size, feature set, and power consumption are optimized for cost-sensitive applications requiring simultaneous sampling. An integrated negative charge pump allows absolute input voltages as low as -1.3V, enabling input signal measurements varying around the ground with a single-ended power supply. The ADS131M02 features a programmable gain amplifier (PGA) with gains up to 128. An integrated input pre-charge buffer enabled at gains greater than 4 ensures high input impedance at high PGA gain settings. The ADC receives its reference voltage from an integrated 1.2V reference, allowing differential input voltages as large as the reference. Each channel on the ADS131M02 contains a digital

decimation filter that demodulates the output of the ΔΣ modulators. The filter enables data rates as high as 32kSPS per channel in high-resolution mode. The relative phase of the samples can be configured between channels, thus allowing an accurate compensation for the sensor phase response. Offset and gain calibration registers can be programmed to automatically adjust output samples for measured offset and gain errors. The ADC 15 Click communicates with MCU through a standard SPI interface to read the conversion data and configure and control the ADS131M02, supporting the most common SPI mode - SPI Mode 1. To normally run the ADS131M02, an LVCMOS clock must be continuously provided at the CLKIN pin, which is achieved with the LTC6903 programmable oscillator activated via the CS2 pin routed to the PWM pin on the mikroBUS™ socket. The frequency of the clock can be scaled in conjunction

with the power mode to provide a trade-off between power consumption and dynamic range. Selection of the bits in the CLOCK register allows the device to be configured in one of three power modes: high-resolution (HR) mode, low-power (LP) mode, and very low-power (VLP) mode. In addition, this Click board™ also uses features such as data-ready/interrupt routed to the INT pin on the mikroBUS™ socket, which serves as a flag to the host to indicate that new conversion data are available and Reset routed to the RST pin that allows for a hardware device reset. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

ADC 15 Click top side image
ADC 15 Click lateral side image
ADC 15 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

32

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PD2
RST
SPI Chip Select
PB2
CS
SPI Clock
PB5
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
LTC6903 Enable
PD6
PWM
Data-Ready / Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

ADC 15 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Arduino UNO Rev3 Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for ADC 15 Click driver.

Key functions:

  • adc15_read_voltage Get voltage value.

  • adc15_set_gain Set gain for channel.

  • adc15_set_word_len Set word len.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief ADC15 Click example
 *
 * # Description
 * This example showcases ability of the click board to 
 * read adc data from 2 different channels. It's also configuratable
 * to read data in different output rate, resolutions( word/data len ),
 * and gain.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of communication modules (SPI, UART) and additional
 * pins for control of the device. Sets default configuration, that 
 * sets gain of 1 for both channels(+/-1.2V range) and word/data length
 * of 24bit. In the end reads device ID.
 *
 * ## Application Task
 * Waits for data ready signal and reads voltage value of both channels,
 * and logs read status and channel voltage level.
 *
 * @author Luka Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "adc15.h"
#include "math.h"

static adc15_t adc15;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    adc15_cfg_t adc15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    adc15_cfg_setup( &adc15_cfg );
    ADC15_MAP_MIKROBUS( adc15_cfg, MIKROBUS_1 );
    err_t init_flag  = adc15_init( &adc15, &adc15_cfg );
    if ( SPI_MASTER_ERROR == init_flag )
    {
        log_error( &logger, " Communication Init. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    } 

    if ( adc15_default_cfg ( &adc15 ) )
    {
        log_error( &logger, " Default configuration. " );
        for( ; ; );
    }
    
    uint16_t reg_val;
    adc15_reg_read( &adc15, ADC15_REG_ID, &reg_val );
    log_printf( &logger, " > ID: 0x%.4X\r\n", reg_val );
    
    log_info( &logger, " Application Task " );
    Delay_ms ( 1000 );
}

void application_task ( void )
{
    while ( adc15_data_ready( &adc15 ) );
    float channel1 = 0;
    float channel2 = 0;
    uint16_t status = 0;
    if ( !adc15_read_voltage( &adc15, &status, &channel1, &channel2 ) )
    {
        log_printf( &logger, " > Status: 0x%.4X\r\n", status );
        log_printf( &logger, " > V ch1: %.3f\r\n", channel1 );
        log_printf( &logger, " > V ch2: %.3f\r\n", channel2 );    
        log_printf( &logger, "************************\r\n" );
        Delay_ms ( 1000 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.