Our high-speed CAN FD transceiver brings reliability and speed together, setting new standards in automotive communication
A
A
Hardware Overview
How does it work?
CAN FD 5 Click is based on the UJA1162A, a ‘self-supplied’ high-speed (HS) CAN transceiver integrating an ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5 compliant CAN transceiver with Sleep Mode from NXP Semiconductors. The UJA1162A provides reliable communication at data rates up to 5 Mbit/s in the CAN FD HS phase and can be operated in a very low-current Sleep mode with local and bus wake-up capability. Various fail-safe and diagnostic features offer enhanced system reliability and advanced power management. The HS CAN transceiver UJA1162A includes a receiver and a transmitter unit, allowing the transceiver to send data to the bus medium and monitor the data from the bus medium simultaneously. The UJA1162A supports five operating modes: Normal, Standby, Sleep, Overtemp, and Off. Each mode has specific characteristics regarding quiescent current, data transmission, or failure diagnostic. When the transceiver is in Sleep Mode, the
pin routed to the external regulator TLS850B0TBV33 positioned on the back of the Click board™, will be turned off, reducing the power consumption of the external elements. Outputs of those LDOs are routed through the SMD jumpers that can be populated so that the LDOs can be used to power up the mikroBUS™ 3.3V and 5V power rails. However, it should be noted that MikroE does not advise powering up their systems this way - that is why these jumpers are left unpopulated by default. The CAN FD 5 Click communicates with MCU using the UART interface with the default baud rate of 9600 bps for the data transfer, while the GPIO pins on this Click board™ are used for Sleep Mode control, local wake-up, and an interrupt for CAN transceiver status. CS pin of the mikroBUS™ socket labeled as the SLP can be used for switching between Normal and Standby/Sleep Mode by toggling this pin. It also has a Local
Wake-Up function routed to the PWM pin on the mikroBUS™, labeled as WAK, which will cause the transition of UJA1162A from Standby/Sleep Mode into Normal Mode. Alongside these pins, this Click board™ possesses an interrupt pin labeled as CTS, which indicates to MCU that the transceiver is fully enabled and data can be transmitted and received via the UART TX/RX pins. It is also possible for the user to connect the TX/RX signals of UART communication directly through the UART External header on the left edge of the board. This Click board™ is designed to operate with 3.3V and 5V logic voltage levels that can be selected via VIO SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.
Features overview
Development board
Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an
ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the
first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.
Microcontroller Overview
MCU Card / MCU
![default](https://dbp-cdn.mikroe.com/catalog/mcus/resources/ATmega328P.jpeg)
Architecture
AVR
MCU Memory (KB)
32
Silicon Vendor
Microchip
Pin count
28
RAM (Bytes)
2048
You complete me!
Accessories
Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.
DB9 Cable Female-to-Female (2m) cable is essential for establishing dependable serial data connections between devices. With its DB9 female connectors on both ends, this cable enables a seamless link between various equipment, such as computers, routers, switches, and other serial devices. Measuring 2 meters in length, it offers flexibility in arranging your setup without compromising data transmission quality. Crafted with precision, this cable ensures consistent and reliable data exchange, making it suitable for industrial applications, office environments, and home setups. Whether configuring networking equipment, accessing console ports, or utilizing serial peripherals, this cable's durable construction and robust connectors guarantee a stable connection. Simplify your data communication needs with the 2m DB9 female-to-female cable, an efficient solution designed to meet your serial connectivity requirements easily and efficiently.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic
![CAN FD 5 Click Schematic schematic](https://dbp-cdn.mikroe.com/catalog/click-boards/resources/1ee790c5-2607-622e-9530-0242ac120009/schematic.webp)
Step by step
Project assembly
Track your results in real time
Application Output
This Click board can be interfaced and monitored in two ways:
Application Output
- Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
UART Terminal
- Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
Software Support
Library Description
This library contains API for CAN FD 5 Click driver.
Key functions:
canfd5_generic_write
- Generic write functioncanfd5_generic_read
- Generic read functioncanfd5_set_normal_operating_mode
- Set normal operating mode function
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief CanFd5 Click example
*
* # Description
* This is an example that demonstrates the use of the CAN FD 5 click board.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and enables the click board.
*
* ## Application Task
* Depending on the selected mode, it reads all the received data or sends the desired message
* every 2 seconds.
*
* ## Additional Function
* - canfd5_process ( ) - The general process of collecting the received data.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "canfd5.h"
#include "string.h"
#define PROCESS_RX_BUFFER_SIZE 500
#define TEXT_TO_SEND "MikroE\r\n"
// ------------------------------------------------------------------ VARIABLES
// #define DEMO_APP_RECEIVER
#define DEMO_APP_TRANSMITTER
static canfd5_t canfd5;
static log_t logger;
// ------------------------------------------------------- ADDITIONAL FUNCTIONS
static void canfd5_process ( void )
{
int32_t rsp_size;
char uart_rx_buffer[ PROCESS_RX_BUFFER_SIZE ] = { 0 };
uint8_t check_buf_cnt;
rsp_size = canfd5_generic_read( &canfd5, uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );
if ( rsp_size > 0 )
{
log_printf( &logger, "Received data: " );
for ( check_buf_cnt = 0; check_buf_cnt < rsp_size; check_buf_cnt++ )
{
log_printf( &logger, "%c", uart_rx_buffer[ check_buf_cnt ] );
}
}
Delay_ms( 100 );
}
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( void )
{
log_cfg_t log_cfg;
canfd5_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
canfd5_cfg_setup( &cfg );
CANFD5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
canfd5_init( &canfd5, &cfg );
canfd5_set_normal_operating_mode( &canfd5 );
Delay_ms( 100 );
}
void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
canfd5_process( );
#endif
#ifdef DEMO_APP_TRANSMITTER
canfd5_generic_write( &canfd5, TEXT_TO_SEND, 8 );
log_info( &logger, "--- The message is sent ---" );
Delay_ms( 2000 );
#endif
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END