Beginner
10 min

Enhance industrial device communication with the DS2485 and ATmega328

An advanced 1-Wire master with EEPROM memory

I2C 1-Wire 2 Click with Arduino UNO Rev3

Published May 16, 2024

Click board™

I2C 1-Wire 2 Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328

Simplify communication by allowing I2C devices to talk to 1-Wire devices easily, especially in industrial settings.

A

A

Hardware Overview

How does it work?

I2C 1-Wire 2 Click is based on the DS2485, an advanced 1-Wire master with memory from Analog Devices. The core function of the DS2485 involves facilitating the protocol transition between the I2C master interface and any connected 1-Wire slave devices. It is equipped with internal, adjustable timers that manage the 1-Wire signaling, thereby offloading the host processor of the duty to produce timing-sensitive 1-Wire signals. This feature allows for both regular and accelerated 1-Wire communication rates. An internal weak pull-up can pull the 1-Wire line up, an external resistor by populating R6 with a chosen resistance value, or combining internal and external pull-up methods for enhanced flexibility. This Click board™ is predominantly utilized in industrial sensor and tool

applications, temporary consumables, and for identifying printer cartridges. Upon receiving commands and data, the DS2485's input/output management unit takes over the execution of crucial 1-Wire operations such as the reset/presence-detection cycle, byte reading and writing, block reading and writing, single-bit read/write operations, executing triplets for ROM search activities, and handling complete command sequences for 1-Wire authenticators—all without the need for continuous host processor intervention. Featuring a 0.75Kb EEPROM array, the DS2485 offers general-purpose, reprogrammable memory distributed across three 32-byte pages at even-numbered addresses, while odd-numbered pages are locked and inaccessible.

Each of these even-numbered pages comes with optional security settings. For communication with the host processor, the DS2485 uses an I2C interface, supporting both standard and fast modes, with communication speeds up to 1MHz. Additionally, the device's general-purpose I/O pin, available on the GPO terminal, can be managed independently via specific commands. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

I2C 1-Wire 2 Click hardware overview image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

32

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
ID COMM
PB2
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

I2C 1-Wire 2 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Arduino UNO Rev3 Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for I2C 1-Wire 2 Click driver.

Key functions:

  • i2c1wire2_master_reset - This function is used to reset device, and return all configuration registers to the default values.

  • i2c1wire2_write_port_cfg - This function is used to write a 1-Wire configuration register.

  • i2c1wire2_search - This function is used to perform 1-Wire Search algorithm and return one device ROMID.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief I2C 1-Wire 2 Click example
 *
 * # Description
 * This example demonstrates the use of the I2C 1-Wire 2 Click board
 * by searching if a device is connected and reading its ROMID.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of I2C module, log UART and perform Click default configuration.
 *
 * ## Application Task
 * Performing 1-Wire Search algorithm to find if any device is connected.
 * If a device is connected and detected, its ROMID will be read and displayed.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "i2c1wire2.h"

static i2c1wire2_t i2c1wire2;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    i2c1wire2_cfg_t i2c1wire2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    i2c1wire2_cfg_setup( &i2c1wire2_cfg );
    I2C1WIRE2_MAP_MIKROBUS( i2c1wire2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == i2c1wire2_init( &i2c1wire2, &i2c1wire2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( I2C1WIRE2_ERROR == i2c1wire2_default_cfg ( &i2c1wire2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    err_t error_flag;
    uint8_t flag;
    uint8_t last_flag;
    uint8_t rom_id[ 8 ] = { 0 };
    #define I2C1WIRE2_DEVICE_SEARCH_CODE            0xF0

    error_flag = i2c1wire2_search ( &i2c1wire2, &flag, rom_id, &last_flag, I2C1WIRE2_SEARCH_RESET | 
                                    I2C1WIRE2_SEARCH_1WIRE_RESET, I2C1WIRE2_DEVICE_SEARCH_CODE );
    if ( I2C1WIRE2_OK == error_flag )
    {   
        if ( I2C1WIRE2_RESULT_BYTE_OK == flag )
        {
            log_printf( &logger, " Device found: \r\n" );
            log_printf( &logger, " Device ROMID: 0x" );
            for ( uint8_t n_cnt = 0; n_cnt < 8; n_cnt++ )
            {
                log_printf( &logger, "%.2X", ( uint16_t ) rom_id[ n_cnt ] );
            }
            log_printf( &logger, " \r\n" );
            log_printf( &logger, " Last device flag %d \r\n", last_flag );
        }
        else if ( I2C1WIRE2_NO_DEVICE_DETECTED == flag )
        {
            log_printf( &logger, " No device detected \r\n" );
        }
        else if ( I2C1WIRE2_NO_PRESENCE_PULS == flag )
        {
            log_printf( &logger, " No presence puls \r\n" );
        }
    }
    else 
    {
        log_printf( &logger, " ERROR \r\n" );
    }
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.