Intermediate
30 min

Personalized oxygen tracking with VCNL4020C and ATmega328P

Live healthier with daily insights

Oximeter 3 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

Oximeter 3 Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Upgrade your solution's health monitoring capabilities with innovative optical pulse oximetry technology

A

A

Hardware Overview

How does it work?

Oximeter 3 Click is based on the VCNL4020C-GS08, a fully integrated biosensor and ambient light sensor with an I2C interface from Vishay Semiconductor. The VCNL4020C-GS08 sensor has a built-in infrared emitter and signal processing IC in a single package with a 16-bit ADC. It also has an ambient light PIN photodiode with close-to-human-eye sensitivity with excellent ambient light suppression through signal modulation. For biosensor functionality, it converts the current from the PIN photodiode to a 16-bit digital data output value, while for ambient light sensing, it converts the current from the ambient light detector, amplifies it, and converts it to a 16-bit digital output stream. The integrated infrared emitter has a peak wavelength of 890nm. It emits light that reflects off an object within 20cm of the sensor and has a programmable drive current from 10mA to 200mA in 10mA steps. The built-in infrared emitter and broader sensitivity

photodiode also can work with the additional onboard green LED and IRLED as designed on this Click board™. As an additional light source, true green color LED (VLMTG1300) with a 525nm peak wavelength is used alongside an infrared dual-color emitting diode (VSMD66694) with 660nm and 940nm peak wavelength well suited for measuring the optical pulse oximetry. The PIN photodiode receives the light reflected off the object and converts it to a current. It has a peak sensitivity of 890nm, matching the peak wavelength of the emitter, and it is insensitive to ambient light. The VCNL4020C also provides ambient light sensing to support conventional backlight and display brightness auto-adjustment. The ambient light sensor receives the visible light and converts it to a current, and it has peak sensitivity at 540nm and bandwidth from 430nm to 610nm. Oximeter 3 Click communicates with the MCU using the standard I2C

2-wire interfacewith a fixed address compatible with all I2C modes (Standard, Fast, and High-Speed).  It allows easy access to a biosensor signal and light intensity measurements without complex calculations or programming. It also generates a programmable interrupt signal routed on the INT pin of the mikroBUS™, which offers Wake-Up functionality for the MCU when a proximity event or ambient light change occurs, which reduces processing overhead by eliminating the need for continuous polling. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Oximeter 3 Click top side image
Oximeter 3 Click lateral side image
Oximeter 3 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Oximeter 3 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Barometer 13 Click front image hardware assembly
Prog-cut hardware assembly
Arduino UNO Rev3 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Oximeter 3 Click driver.

Key functions:

  • void oximeter3_generic_write ( uint8_t reg_addr, uint8_t write_data ) - Function for writing data to register address.
  • uint8_t oximeter3_generic_read ( uint8_t reg_addr ) - Function for reading data from register address.
  • uint16_t oximeter3_read_value ( uint8_t type_macro ) - Function for reading value from sensor.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Oximeter3 Click example
 * 
 * # Description
 * This example demonstrates the use of Oximeter 3 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver, checks the device ID then configures the device for the selected mode.
 * 
 * ## Application Task  
 * Depending on the selected mode it reads heart rate data (OXIMETER3_HEART_RATE mode) or
 * values of proximity and ambient light sensor (OXIMETER3_PROX or OXIMETER3_ALS modes).
 * All data is being logged on USB UART where you can track their changes.
 * 
 * @note
 * In the case of heart rate, please use a Serial Plot application for data plotting.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "oximeter3.h"

// ------------------------------------------------------------------ VARIABLES

static oximeter3_t oximeter3;
static log_t logger;

uint8_t dev_mode = 0;
uint16_t rd_val = 0;
uint16_t counter = 2500;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    oximeter3_cfg_t cfg;

    uint8_t dev_status;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    oximeter3_cfg_setup( &cfg );
    OXIMETER3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    oximeter3_init( &oximeter3, &cfg );

    dev_status = oximeter3_generic_read( &oximeter3, OXIMETER3_REG_PRODUCT_ID );
    
    if ( dev_status != OXIMETER3_ID_VAL )
    {
        log_printf( &logger, " *****  ERROR!  ***** \r\n" );
        for ( ; ; );
    }

    dev_mode = OXIMETER3_HEART_RATE;
    
    oximeter3_generic_write( &oximeter3, OXIMETER3_REG_COMMAND,
                                         OXIMETER3_CMD_MEASUREMENT_DISABLE );
    
    oximeter3_generic_write( &oximeter3, OXIMETER3_REG_INTERRUPT_CTRL,
                                         OXIMETER3_INT_STATUS_PROX );
    
    if ( OXIMETER3_HEART_RATE == dev_mode )
    {
        oximeter3_generic_write( &oximeter3, OXIMETER3_REG_LED_CURRENT, 
                                             OXIMETER3_LED_CURR_MID );
        oximeter3_generic_write( &oximeter3, OXIMETER3_REG_PROX_MODULATOR_TIMING,
                                             OXIMETER3_PROX_TIMING_FREQ_390p625_KHZ );
    }
    else
    {
        oximeter3_generic_write( &oximeter3, OXIMETER3_REG_LED_CURRENT, 
                                             OXIMETER3_LED_CURR_MIN );
        oximeter3_generic_write( &oximeter3, OXIMETER3_REG_PROX_MODULATOR_TIMING,
                                             OXIMETER3_PROX_TIMING_FREQ_3p125_MHZ );
    }
    
    oximeter3_generic_write( &oximeter3, OXIMETER3_REG_PROX_RATE,
                                         OXIMETER3_PROX_RATE_250_MPS );

    oximeter3_generic_write( &oximeter3, OXIMETER3_REG_COMMAND,
                                         OXIMETER3_CMD_MEASUREMENT_ENABLE |
                                         OXIMETER3_CMD_PROX_PERIODIC_MEASUREMENT_ENABLE |
                                         OXIMETER3_CMD_ALS_PERIODIC_MEASUREMENT_ENABLE );

    log_printf( &logger, " ***** APP TASK ***** \r\n" );
}

void application_task ( void )
{
    if ( OXIMETER3_HEART_RATE == dev_mode )
    {
        if( !oximeter3_get_int_status( &oximeter3 ) )
        {
            rd_val = oximeter3_read_value( &oximeter3, OXIMETER3_PROX );
            oximeter3_generic_write( &oximeter3, OXIMETER3_REG_INTERRUPT_STATUS, 
                                                 OXIMETER3_INT_STATUS_PROX );
            
            counter++;
            if ( rd_val > 10000 )
            {
                log_printf( &logger, "%u\r\n", rd_val );
                counter = 2500;
            }
            else if ( counter > 2500 )
            {
                log_printf( &logger, "Please place your index finger on the sensor.\r\n" );
                counter = 0;
            }
        }
    }
    else if ( OXIMETER3_PROX == dev_mode || OXIMETER3_ALS == dev_mode )
    {
        if( !oximeter3_get_int_status( &oximeter3 ) )
        {
            rd_val = oximeter3_read_value( &oximeter3, OXIMETER3_PROX );
            oximeter3_generic_write( &oximeter3, OXIMETER3_REG_INTERRUPT_STATUS, 
                                                 OXIMETER3_INT_STATUS_PROX );
            
            log_printf( &logger, " * Proximity: %u \r\n", rd_val );
        
            rd_val = oximeter3_read_value( &oximeter3, OXIMETER3_ALS );
            log_printf( &logger, " * ALS: %u \r\n", rd_val );
            
            log_printf( &logger, "******************** \r\n" );
            
            Delay_ms( 500 );
        }
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.