Track real-time temperature, voltage, and current easily for issue detection and operational optimization
A
A
Hardware Overview
How does it work?
VCT Monitor Click is based on the LTC2990, a high-performance temperature, voltage, and current monitor with the I2C serial interface from Analog Devices. The LTC2990 can be configured to measure many combinations of internal temperature, remote temperature, remote voltage or current, and internal VCC with single or repeated measurements. It fits in systems needing sub-millivolt voltage resolution, 1% current measurement, and 1°C temperature accuracy or any combination. The input signals are selected with an input MUX, controlled by the control logic
block. The control logic uses the mode bits in the control register to manage the sequence and types of data acquisition. The control logic also controls the variable current sources during remote temperature acquisition. The ADC performs the necessary conversion(s) and supplies the data to the control logic for further processing for temperature measurements or routing to the appropriate data register for voltage and current measurements. Remote measurements are performed on terminals labeled as TEMP and LOAD using multiple ADC conversions and source
currents to compensate for sensor series resistance. The LTC2990 is calibrated to yield the correct temperature for a remote diode with an ideality factor of 1.004. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.
Features overview
Development board
Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an
ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the
first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.
Microcontroller Overview
MCU Card / MCU

Architecture
AVR
MCU Memory (KB)
32
Silicon Vendor
Microchip
Pin count
32
RAM (Bytes)
2048
You complete me!
Accessories
Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for VCT Monitor Click driver.
Key functions:
vctmonitor_get_status
- Gets status valuevctmonitor_read_temperature
- Get temperature functionvctmonitor_read_current
- Current function
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief VCTMonitor Click example
*
* # Description
* This is an example which demonstrates the use of VCT Monitor Click board.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization driver enables the USB uart terminal and I2C.
*
* ## Application Task
* Reads temperature, current value, and differential voltage every 4 seconds.
*
* @note
* The click has been tested using the following:
* - Power supply - 4V
* - Current (Load) - 0A to 3A
* - External MMBT3904 temperature sensor
*
* @author Stefan Ilic
*
*/
#include "board.h"
#include "log.h"
#include "vctmonitor.h"
static vctmonitor_t vctmonitor;
static log_t logger;
void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
vctmonitor_cfg_t vctmonitor_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
vctmonitor_cfg_setup( &vctmonitor_cfg );
VCTMONITOR_MAP_MIKROBUS( vctmonitor_cfg, MIKROBUS_1 );
err_t init_flag = vctmonitor_init( &vctmonitor, &vctmonitor_cfg );
if ( I2C_MASTER_ERROR == init_flag ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
void application_task ( void ) {
float temperature;
float voltage;
float current;
voltage = vctmonitor_read_voltage_differential( &vctmonitor );
log_printf( &logger, " Voltage : %.2f mV \r\n", voltage );
current = vctmonitor_read_current( &vctmonitor );
log_printf( &logger, " Current : %.2f mA \r\n", current );
temperature = vctmonitor_read_temperature( &vctmonitor );
log_printf( &logger, " Temperature: %.2f C \r\n", temperature );
log_printf( &logger, "- - - - - - - - - - - -\r\n" );
Delay_ms( 4000 );
}
void main ( void ) {
application_init( );
for ( ; ; ) {
application_task( );
}
}
// ------------------------------------------------------------------------ END
Additional Support
Resources
Category:Measurements