Intermediate
30 min

Achieve simultaneous ADC and DAC capabilities with AD74413R and STM32F103RB

Unlock precision and versatility

AD-SWIO 2 Click with Nucleo 64 with STM32F103RB MCU

Published Oct 08, 2024

Click board™

AD-SWIO 2 Click

Dev. board

Nucleo 64 with STM32F103RB MCU

Compiler

NECTO Studio

MCU

STM32F103RB

Elevate your design's abilities with the ultimate ADC-DAC combo solution

A

A

Hardware Overview

How does it work?

AD-SWIO 2 Click is based on AD74413R, a 16-bit analog-to-digital converter (ADC), and a 13-bit digital-to-analog converter (DAC) from Analog Devices. There are several modes related to the AD74413R. These modes are voltage output, current output, voltage input, externally powered current input, loop-powered current input, external RTD measurement, digital input logic, and loop-powered digital input. The ADC can measure either the voltage across the 100Ω RSENSE or the voltage at each channel's I/OP_x screw terminal. In high impedance mode, the ADC, by default, measures the voltage across the screw terminals (I/OP_x to I/ON_x) in a 0 V to 10 V range. The ADC also provides diagnostic information on user-selectable inputs such as supplies, internal die temperature, reference, and regulators. The AD74413R can operate with either an external or an internal reference. The reference input requires 2.5 V for the AD74413R to function correctly. The reference voltage is internally buffered before being applied to the DAC and the ADC. The AD-SWIO 2 Click contains a jumper for the selection reference voltage; the left position (Default) is the selection

of external reference voltage. The ADR4525 from Analog Devices provides an external reference voltage. The ADR4525BRZ is high precision, low noise voltage reference featuring ±0.02% maximum initial error. By switching to the right position of the Vref jumper, the AD74413R uses the internal reference voltage. If The AD-SWIO 2 Click using internal reference voltage, the REFIN pin must be tied to the REFOUT pin. The AD-SWIO 2 Click has four GPO-x pins, one per channel (GPO-A, GPO-B, GPO-C, GPO-D). Each channel GPO-x pin can be configured to the logic outputs of the digital input functions or a logic high or low output. The GPO-x pins can be set via the GPO_SELECT bits within the GPO_CONFIGx registers. The Click board™ also contains an LVIN ( Low Voltage Input) pin, the measurement voltage range on this pin is 0V to 2.5V. The AD74413R contains four 13-bit DACs, one per channel. Each DAC core is a 13-bit string DAC. The architecture structure consists of a string of resistors, each with a value of R. The digital input code loaded to the DAC_CODEx registers determines which string node the voltage is tapped off from and fed into the

output amplifier.This architecture is inherently monotonic and linear. The AD74413R has short-circuited limit in voltage output mode that is programmable per channel. The circuit minimizes glitching on the I/OP_x screw terminal when the AVDD supply is ramping, or the use case configuration is changed. This short-circuit limit you can regulate with a positive analog supply on the AVDD pin, Output voltage on AD-SWIO 2 Click is limited to +20V. The AD-SWIO 2 Click is equipped with the ADP1613 step-up dc-to-dc switching converter from Analog Devices with an integrated power switch capable of providing an output voltage as high as 20V. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

ad-swio-2-click-hardware-overview

Features overview

Development board

Nucleo-64 with STM32F103RB MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F103RB MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M3

MCU Memory (KB)

128

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

20480

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PC12
RST
SPI Chip Select
PB12
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Alert Status
PC8
PWM
Data Ready
PC14
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

AD-SWIO 2 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32F103RB MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for AD-SWIO 2Click driver.

Key functions:

  • adswio2_get_conv_results - This function allows user to get the converted results of the selected channel.

  • adswio2_status_pin_ready - This function checks the status of the ready pin.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief AdSwio2 Click example
 * 
 * # Description
 * This Click is a quad-channel software configurable input/output solution for building 
 * and process control application. The AD-SWIO 2 Click contains four 13-bit DACs, one 
 * per chanal, and 16-bit Σ-∆ ADC. These options give a lot of flexibility in choosing 
 * functionality for analog output, analog input, digital input, resistance temperature 
 * detector (RTD), and thermocouple measurements integrated into a single chip solution 
 * with a serial peripheral interface (SPI).
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Performs a hardware reset of the Click board and
 * executes a default configuration that enables channel A and sets it to measure voltage
 * input in the range from 0V to 10V, with 4800 SPS.
 * 
 * ## Application Task  
 * Waits for the data ready and then reads the results of ADC conversion from channel A
 * and if response is ok, then prints the results on the uart console.
 *  
 * ## Additional Functions
 *
 * - void application_default_handler ( uint8_t *err_msg ) - Sends an error report messages from Click
 * driver to initialized console module. It must be set using adswio2_set_handler function.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "adswio2.h"

// ------------------------------------------------------------------ VARIABLES

static adswio2_t adswio2;
static log_t logger;

static uint8_t adswio2_rdy;
static adswio2_err_t adswio2_err;
static uint16_t adswio2_ch_a;
static uint16_t timeout;
static float adswio2_res;

const uint16_t ADSWIO2_RANGE_VOLT_MV = 10000;
const uint32_t ADSWIO2_RANGE_RESOLUTION = 65536;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void application_default_handler ( uint8_t *err_msg )
{
    char *err_ptr = err_msg;

    log_printf( &logger, "\r\n" );
    log_printf( &logger, "[ERROR] : %s", err_ptr );
    log_printf( &logger, "\r\n" );
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    adswio2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    adswio2_cfg_setup( &cfg );
    ADSWIO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    adswio2_init( &adswio2, &cfg );
    Delay_ms ( 100 );
    
    adswio2_default_cfg( &adswio2 );
    Delay_ms ( 1000 );

    adswio2_rdy  = DUMMY;
    adswio2_ch_a = DUMMY;
    adswio2_res  = DUMMY;
    adswio2_err  = ADSWIO2_ERR_STATUS_OK;
    log_printf( &logger, " AD-SWIO 2 Click initialization done \r\n");
    log_printf( &logger, "************************************\r\n");
}

void application_task ( void )
{
    timeout = 0;
    do
    {
        Delay_1ms( );
        timeout++;
        adswio2_rdy = adswio2_status_pin_ready( &adswio2 );
        if ( timeout > 3000 ) 
        {
            timeout = 0;
            log_printf( &logger, " Reinitializing...");
            adswio2_default_cfg( &adswio2 );
            log_printf( &logger, "Done\r\n");
        }
    }
    while ( adswio2_rdy != 0 );
    
    adswio2_err = adswio2_get_conv_results( &adswio2, ADSWIO2_SETUP_CONV_EN_CHA, &adswio2_ch_a );
    
    if ( adswio2_err == ADSWIO2_ERR_STATUS_OK )
    {
        adswio2_res = adswio2_ch_a;
        adswio2_res /= ADSWIO2_RANGE_RESOLUTION;
        adswio2_res *= ADSWIO2_RANGE_VOLT_MV;
        adswio2_ch_a = adswio2_res;

        log_printf( &logger, " Voltage from channel A: %d mV\r\n", adswio2_ch_a );
        
        log_printf( &logger, "-----------------------------------\r\n\r\n" );
        Delay_ms ( 200 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.