Intermediate
30 min

Decode, express, and amplify data across diverse applications with MCP4728 and STM32F091RC

Empower data expression

DAC 4 Click with Nucleo-64 with STM32F091RC MCU

Published Feb 26, 2024

Click board™

DAC 4 Click

Dev Board

Nucleo-64 with STM32F091RC MCU

Compiler

NECTO Studio

MCU

STM32F091RC

Designed for precision, it transforms digital insights into analog realities, enabling seamless communication and decision-making

A

A

Hardware Overview

How does it work?

DAC 4 Click is based on the MCP4728, a quad, 12-bit voltage output Digital-to-Analog converter (DAC) with nonvolatile memory (EEPROM) from Microchip. Its onboard precision output amplifier allows it to achieve rail-to-rail analog output swing. The DAC input codes, device configuration bits, and I2C address bits are programmable to the nonvolatile memory (EEPROM) using I2C serial interface commands. The nonvolatile memory feature enables the DAC device to hold the DAC input codes during power-off time, allowing the DAC outputs to be available immediately after power-up with the saved settings. The MCP4728 device has a high-precision internal voltage reference (VREF = 2.048V). The user can select the internal reference, or an external reference may be used (VDD) for each channel individually. This

gives the ADC 4-click good flexibility for use in various applications. Each channel can be operated individually in Normal mode or Power-Down mode by setting the configuration register bits. In Power-Down mode, most of the internal circuits in the powered-down channel are turned off for power savings, and the output amplifier can be configured to present a known low, medium, or high resistance output load. This device also includes a Power-on Reset (POR) circuit to ensure reliable power-up and an onboard charge pump for the EEPROM programming voltage. The MCP4728 has four output pins routed to the output terminal blocks (TB1 and TB2). The output range of the DAC is 0 V to VREF or 0 V to 2×V REF. The communication with the main MCU is established over a two-wire I2C compatible serial

interface, with standard (100 kHz), fast (400 kHz), or high speed (3.4 MHz) modes supported. The I2C lines (SCL and SDA) are routed to the dedicated mikroBUS™pins. The LDA pin is a multipurpose GPIO: It can be used as Synchronization input or for the device I2C address selection. RDY pin can also optionally be used to monitor the status of EEPROM programming activity. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

DAC 4 Click top side image
DAC 4 Click bottom side image

Features overview

Development board

Nucleo-64 with STM32F091RC MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F091RC MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Multipurpose Pin
PC8
PWM
Data Ready
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

DAC 4 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo-64 with STM32F091RC MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for DAC 4 Click driver.

Key functions:

  • dac4_voltage_reference_set - Setting channel voltage reference values

  • dac4_gain_set - Writing channel gain values

  • dac4_data_report - Reading channel data and forming reports

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief Dac4 Click example
 * 
 * # Description
 * This application enables usage of digital to analog converter.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes I2C driver, executes general call reset and wake up commands.
 * 
 * ## Application Task  
 * Changes the output voltage of channels every 3 seconds, and displays
 * the channels status on the USB UART.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "dac4.h"

// ------------------------------------------------------------------ VARIABLES

static dac4_t dac4;
static log_t logger;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void dac4_log_report ( uint8_t channel_no )
{
    dac4_channel_setting_t dac4_channel_buffer[ 8 ];

    dac4_data_report ( &dac4, dac4_channel_buffer );
    channel_no *= 2;
    
    log_printf( &logger, "--- Power ON bit: " );
    switch ( dac4_channel_buffer[ channel_no ].por_bit )
    {
        case 0:
        {
            log_printf( &logger,"Power OFF\r\n" );
            break;
        }
        case 1:
        {
            log_printf( &logger, "Power ON\r\n" );
            break;
        }
        default :
        {
            break;
        }
    }

    log_printf( &logger, "--- V reference    : " );
    switch ( dac4_channel_buffer[ channel_no ].voltage_reference )
    {
        case DAC4_VREF_EXTERNAL:
        {
            log_printf( &logger, "External\r\n" );
            break;
        }
        case DAC4_VREF_INTERNAL:
        {
            log_printf( &logger, "Internal\r\n" );
            break;
        }
        default :
        {
            break;
        }
    }

    log_printf( &logger, "--- Power mode     : " );
    switch ( dac4_channel_buffer[ channel_no ].power_mode )
    {
        case DAC4_MODE_NORMAL:
        {
            log_printf( &logger, "Normal\r\n" );
            break;
        }
        case DAC4_MODE_1kOhm:
        {
            log_printf( &logger, "1 kOhm\r\n" );
            break;
        }
        case DAC4_MODE_100kOhm:
        {
            log_printf( &logger, "100 kOhm\r\n" );
            break;
        }
        case DAC4_MODE_500kOhm:
        {
            log_printf( &logger, "500 kOhm\r\n" );
            break;
        }
        default :
        {
            break;
        }
    }

    log_printf( &logger, "--- Gain value     : " );
    switch ( dac4_channel_buffer[ channel_no ].gain_value )
    {
        case DAC4_MODE_NORMAL:
        {
            log_printf( &logger, "1x Gain\r\n" );
            break;
        }
        case DAC4_MODE_1kOhm:
        {
            log_printf( &logger, "2x Gain\r\n" );
            break;
        }
        default :
        {
            break;
        }
    }
    
    log_printf( &logger, "--- DAC input data : %d  [0-4095]\r\n", dac4_channel_buffer[ channel_no ].dac_input_data );
    log_printf( &logger, "-------------------------------------\r\n" );
}

void dac4_set_output ( uint8_t channel_set )
{
    dac4_channel_setting_t dac4_channel_x;
    static uint16_t aux_dac_input_data = 0;
    
    dac4_channel_x.channel_select = channel_set;
    dac4_channel_x.udac_bit = DAC4_UPDATE;
    dac4_channel_x.voltage_reference = DAC4_VREF_EXTERNAL;
    dac4_channel_x.power_mode = DAC4_MODE_NORMAL;
    dac4_channel_x.gain_value = DAC4_GAIN_x1;
    dac4_channel_x.dac_input_data = aux_dac_input_data;

    if ( 0 != dac4_single_write( &dac4, &dac4_channel_x ) )
    {
        log_printf( &logger, "--- Fatal ERROR !!! \r\n" );
    }
    else
    {
        log_printf( &logger, "------------------------------------- \r\n" );
        log_printf( &logger, "--- Output setup done \r\n" );
        log_printf( &logger, "------------------------------------- \r\n" );
        aux_dac_input_data += 500;
        if ( aux_dac_input_data > 4095 )
        {
            aux_dac_input_data = 0;
        }
    }
}

void dac4_channel_report ( )
{
    log_printf( &logger, "\r\n -----> Channel A \r\n" );
    dac4_set_output( DAC4_CHANNEL_A );
    dac4_log_report( 0 );
    Delay_ms( 3000 );
    
    log_printf( &logger, "\r\n -----> Channel B \r\n" );
    dac4_set_output( DAC4_CHANNEL_B );
    dac4_log_report( 1 );
    Delay_ms( 3000 );
    
    log_printf( &logger, "\r\n -----> Channel C \r\n" );
    dac4_set_output( DAC4_CHANNEL_C );
    dac4_log_report( 2 );
    Delay_ms( 3000 );
    
    log_printf( &logger, "\r\n -----> Channel D \r\n" );
    dac4_set_output( DAC4_CHANNEL_D );
    dac4_log_report( 3 );
    Delay_ms( 3000 );
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    dac4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dac4_cfg_setup( &cfg );
    DAC4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dac4_init( &dac4, &cfg );
    log_info( &logger, "---- Application ----" );

    Delay_ms( 500 );
    dac4_general_call_reset( &dac4 );
    Delay_ms( 500 );
    dac4_general_call_wake_up( &dac4 );
    Delay_ms( 500 );

    log_printf( &logger, "--- App init done \r\n \r\n" );
}

void application_task ( void )
{
    dac4_channel_report( );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.