Easily integrate our Serial Quad I/O Flash Memory into existing systems, upgrading storage performance and meeting the demands of modern data-centric applications
A
A
Hardware Overview
How does it work?
SQI FLASH Click is based on the SST26VF064B, a 64 Mbit Serial Quad I/O flash device from Microchip. The chip utilizes a 4-bit multiplexed I/O serial interface to boost performance. The Click is a fast solid-state, non-volatile data storage medium that can be electrically erased and reprogrammed. Operating at 104 MHz, the SST26VF064B enables minimum latency execute-in-place (XIP) capability without code shadowing. Features like high performance and reliability make the SQI Flash click the ideal choice for network appliances, DSL and cable modems, wireless network devices, automotive, and other applications where high-speed, reliable data storage is needed. Further benefits are achieved with its proprietary, high-performance CMOS SuperFlash® technology, which significantly improves performance
and reliability and lowers power consumption. SQI Flash click features a 4-bit I/O interface allowing low-power and high-performance operation. SST26VF064B supports full command-set compatibility with traditional Serial Peripheral Interface (SPI) protocol. System designs using the SQI flash devices occupy less board space and ultimately lower the system costs. The SST26VF064B device is configured as a regular SPI device after the power-on, keeping the backward compatibility with the SPI interface. Once started using the regular SPI interface, the device can be configured to work in the Serial Quad Interface mode by setting the config registers. Several more features on this device are used to protect and manage data, such as the factory-programmed serial ID number, which can not be changed.
This can be used for identification or building various kinds of security devices. On top of the factory serial number, it is possible to define a second custom serial ID number, which can be locked by a protection bit. The device also has several non-volatile memory locations for storing protection/lock bits - so the device won't change the protection status when restarted. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.
Features overview
Development board
Nucleo-64 with STM32F410RB MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin
headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is
provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.
Microcontroller Overview
MCU Card / MCU

Architecture
ARM Cortex-M4
MCU Memory (KB)
128
Silicon Vendor
STMicroelectronics
Pin count
64
RAM (Bytes)
32768
You complete me!
Accessories
Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for SQI Flash Click driver.
Key functions:
sqiflash_write_generic
- SQI FLASH Writesqiflash_read_generic
- SQI FLASH Readsqiflash_global_block_unlock
- SQI FLASH Global Block Unlock
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief SqiFlash Click example
*
* # Description
* This is an example that demonstrates the use of the SQI FLASH Click board.
*
* The demo application is composed of two sections :
*
* ## Application Init
* SQI FLASH Driver Initialization, initializes the click by setting mikroBUS to
* approprieate logic levels, performing global block unlock and chip erase functions,
* reads manufacturer ID, memory type and device ID and logs it on USB UART terminal.
*
* ## Application Task
* Writing data to click memory and displaying the read data via UART.
*
* @author Stefan Ilic
*
*/
#include "board.h"
#include "log.h"
#include "sqiflash.h"
static sqiflash_t sqiflash;
static log_t logger;
uint8_t device_manufac = 0;
uint8_t device_type = 0;
uint8_t device_id = 0;
uint8_t wr_data[ 9 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13, 10, 0 };
uint8_t rd_data[ 9 ] = { 0 };
uint32_t address = 0x015015ul;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
sqiflash_cfg_t sqiflash_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
sqiflash_cfg_setup( &sqiflash_cfg );
SQIFLASH_MAP_MIKROBUS( sqiflash_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == sqiflash_init( &sqiflash, &sqiflash_cfg ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
Delay_ms ( 300 );
sqiflash_global_block_unlock( &sqiflash );
Delay_ms ( 400 );
sqiflash_chip_erase( &sqiflash );
Delay_ms ( 300 );
device_manufac = sqiflash_device_manufac( &sqiflash );
log_printf( &logger, " Manufacturer ID: 0x%.2X\r\n", ( uint16_t ) device_manufac );
device_type = sqiflash_device_type( &sqiflash );
log_printf( &logger, " Memory Type: 0x%.2X\r\n", ( uint16_t ) device_type );
device_id = sqiflash_device_id( &sqiflash );
log_printf( &logger, " Device ID: 0x%.2X\r\n", ( uint16_t ) device_id );
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
log_printf( &logger, " Writing data to address: 0x%.6LX\r\n", address );
sqiflash_write_generic( &sqiflash, address, wr_data, 9 );
log_printf( &logger, " Written data: %s", wr_data );
log_printf( &logger, "\r\n Reading data from address: 0x%.6LX\r\n", address );
sqiflash_read_generic( &sqiflash, address, rd_data, 9 );
log_printf( &logger, " Read data: %s", rd_data );
log_printf( &logger, "-------------------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END