Beginner
10 min

Control brushless DC motors in various home appliances with TB6605FTG and STM32F410RB

Three-phase full sine-wave BLDC controller for fans and various appliances

Brushless 31 Click with Nucleo 64 with STM32F410RB MCU

Published Oct 08, 2024

Click board™

Brushless 31 Click

Dev. board

Nucleo 64 with STM32F410RB MCU

Compiler

NECTO Studio

MCU

STM32F410RB

Power up your home appliances and office equipment with reliable BLDC motor performance!

A

A

Hardware Overview

How does it work?

Brushless 31 Click is based on the TB6605FTG, a three-phase full sine-wave brushless motor controller from Toshiba Semiconductor, specifically made for home appliances, fans, and office equipment applications. This Click board™ uses the advanced capabilities of the TB6605FTG to control brushless motors through six onboard external N-channel MOSFETs (SSM6K513NU), ensuring smooth and efficient operation. The TB6605FTG features sine-wave PWM driving with 2-phase modulation, which enables high efficiency and low noise performance. Additionally, it includes a dead time function, brake, and start mechanisms to enhance motor control precision. The speed command is managed via a PWM input, and the auto lead-angle control function, which is disabled by default, can be manually activated to automatically adjust the lead angle based on motor speed, ensuring optimal performance once enabled. Furthermore, the board supports both clockwise and counterclockwise rotation (DIR pin) and is equipped with a motor lock protection function for added safety during operation. This Click board™ is designed to support a wide range of external power supplies, accepting input voltages from 9V to 28V through terminals on the board's front side marked VIN. It can deliver a

maximum output current of up to 5A, providing robust power for driving BLDC motors connected to the OUT terminals. The board also includes dedicated pins for additional Hall sensor connections via the J1 header to enhance the motor's performance and precision further. The VR1 trimmer, allows manual adjustment of the Lead Angle (auto Lead Angle function is disabled by default) to ensure e optimal motor performance. Various BLDC motors, particularly those with built-in Hall sensors, such as the BLDC Motor with Hall Sensor available from MIKROE, making it a versatile solution for high-precision motor control applications. In addition to the PWM pin for motor speed control and the DIR pin for controlling rotational direction, this Click board™ uses several control pins from the mikroBUS™ socket. The RST pin serves the START function, initiating motor operation when set to a LOW logic state and stopping it when set to HIGH. The BRK pin is dedicated to motor brake control, providing precise braking functionality. Additionally, the HP pin outputs the signal from the Hall pulse monitor, offering real-time feedback on the motor's position and speed. The onboard switches serve crucial functions for motor control. The OVP SEL switch allows you to toggle the output drive mode based

on the power supply voltage, either 12V or 24V. This is particularly important when the motor's rotation speed decreases rapidly due to a drop in PWM duty in the 180° energization mode (sine-wave drive). In such cases, the power supply voltage can rise as current flows back from the motor to the power source. The OVP SEL function is designed to suppress this voltage boost by switching the operation from 180° energization (synchronous rectification) to 120° energization when the supply voltage increases. The CLD SEL switch provides control over the motor lock protection feature of the TB6605FTG, which turns OFF the output power FETs when the motor is locked. This switch allows you to choose between Auto (AU) and Latch (LA) modes during a motor lock condition. In the Auto recovery mode, the operation recovers with three times the lock detecting time. This Click board™ can operate with either 3.3V or 5V logic voltage levels. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Brushless 31 Click hardware overview image

Features overview

Development board

Nucleo-64 with STM32F410RB MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32C031C6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

128

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Brushless DC (BLDC) Motor with a Hall sensor represents a high-performance motor from the 42BLF motor series. This motor, wired in a star configuration, boasts a Hall Effect angle of 120°, ensuring precise and reliable performance. With a compact motor length of 47mm and a lightweight design tipping the scales at just 0.29kg, this BLDC motor is engineered to meet your needs. Operating flawlessly at a voltage rating of 24VDC and a speed range of 4000 ± 10% RPM, this motor offers consistent and dependable power. It excels in a normal operational temperature range from -20 to +50°C, maintaining efficiency with a rated current of 1.9A. Also, this product seamlessly integrates with all Brushless Click boards™ and those that require BLDC motors with Hall sensors.

Brushless 31 Click accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Direction Control
PC0
AN
Start-Stop / ID SEL
PC12
RST
Brake / ID COMM
PB12
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Input
PC8
PWM
Hall Pulse Monitor
PC14
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Brushless 31 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32F410RB MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Brushless 31 Click driver.

Key functions:

  • brushless31_set_duty_cycle - This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

  • brushless31_pull_brake - This function pulls brake by setting the BRAKE pin to low logic state.

  • brushless31_switch_direction - This function switches the direction of motor rotation by toggling the DIR pin logic state.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Brushless 31 Click example
 *
 * # Description
 * This example demonstrates the use of the Brushless 31 click board by driving the 
 * motor in both directions at different speeds.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Controls the motor speed by changing the PWM duty cycle every 500 milliseconds.
 * The duty cycle ranges from 80% to 0%. At the minimal speed, the motor switches direction.
 * Each step will be logged on the USB UART where you can track the program flow.
 *
 * @note
 * This click board is designed for 5V systems but can also be controlled with 3V3 GPIO lines.
 * Ensure your MCU is 5V tolerant on mikroBUS GPIO lines before turning on the power supply.
 * 
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "brushless31.h"

static brushless31_t brushless31;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless31_cfg_t brushless31_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless31_cfg_setup( &brushless31_cfg );
    BRUSHLESS31_MAP_MIKROBUS( brushless31_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless31_init( &brushless31, &brushless31_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BRUSHLESS31_ERROR == brushless31_default_cfg ( &brushless31 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    static int8_t duty_cnt = 8;
    static int8_t duty_inc = -1;
    float duty = duty_cnt / 10.0;
    
    brushless31_set_duty_cycle ( &brushless31, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    
    Delay_ms ( 500 );

    duty_cnt += duty_inc;
    if ( duty_cnt > 8 ) 
    {        
        duty_cnt = 8;
        duty_inc = -1;
        log_printf( &logger, " Pull brake\r\n" );
        brushless31_pull_brake ( &brushless31 );
        Delay_ms ( 1000 );
        log_printf( &logger, " Switch direction\r\n" );
        brushless31_switch_direction ( &brushless31 );
        Delay_ms ( 1000 );
        log_printf( &logger, " Release brake\r\n" );
        brushless31_release_brake ( &brushless31 );
        Delay_ms ( 1000 );
    }
    else if ( duty_cnt < 0 ) 
    {
        duty_cnt = 1;
        duty_inc = 1;
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.