Intermediate
30 min

Achieve fan speed wizardry with MIC74 and STM32F031K6

Masters of the air

Fan 3 click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

Fan 3 click

Dev Board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Where innovation meets optimal cooling performance

A

A

Hardware Overview

How does it work?

Fan 3 Click is based on the MIC74, a serial to parallel I/O expander and fan controller, and the MIC29152, a high current, high accuracy, low dropout voltage regulator both from Microchip. The four most significant bit outputs can be used to implement the fan speed control. This device uses an I2C communication protocol to set up dedicated internal registers. The CLK and DATA pins are routed to mikroBUS™ I2C pins. Also, those pins are already pulled up with the 4k7 resistors on the click board, so there is no need to use additional pull-up resistors. The three most significant bit outputs are equipped with resistors connected to the feedback input (ADJ) of the MIC29152. This regulator is used to output the regulated voltage for the fan, determined by the

feedback voltage on the ADJ pin. The regulator's output is set to 12V when the maximum speed is selected. The recommended input voltage should be at most 12V because, in that case, the regulating efficiency won't be optimal, and the excess power will be dissipated as the heat. The voltage regulator features an internal power limiting logic, which protects it from damage in case of an excessive load on its output. Individual open-drain output bits of the MIC74 are selectively grounded or allowed to float under the control of the internal state machine, so the equivalent resistance seen by the MIC29152 regulator's feedback path is raised or lowered, changing the output voltage that way. The fourth bit is set to work as the SHDN, which enables the voltage

regulator via its EN pin when the I2C selects the fan mode. Setting this bit will activate the voltage regulator, and the fan will start turning with the speed defined by the MIC74 registers. Fan 3 click can be used on several different I2C addresses, selectable by the ADD SEL jumpers. Those jumpers are used to directly set A0 to A2 address select pins of the MIC74. All address pins are grounded by default, which sets the slave I2C address to 0x20h. The click is equipped with two connectors. One connector connects an external voltage source fed to the regulator's input. The other connector is used to connect the load - usually an electromotor which works with the nominal voltage of 12V and has the fan blades attached to its rotor.

Fan 3 click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB6
SCL
I2C Data
PB7
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Fan 3 click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
Stepper 22 Click front image hardware assembly
Prog-cut hardware assembly
Stepper 22 Click complete accessories setup image hardware assembly
Nucleo-32 with STM32 MCU Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
STM32 M4 Clicker HA MCU/Select Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for Fan 3 Click driver.

Key functions:

  • fan3_set_speed - Set fan speed function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Fan3 Click example
 * 
 * # Description
 * This application controls the fan speed.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the click device.
 * 
 * ## Application Task  
 * Cycles through different fan speeds, including 0 - stopped.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "fan3.h"

// ------------------------------------------------------------------ VARIABLES

static fan3_t fan3;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    fan3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fan3_cfg_setup( &cfg );
    FAN3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fan3_init( &fan3, &cfg );

    log_printf( &logger, ">>> Initialized...\r\n" );
}

void application_task ( )
{
    log_printf( &logger, "Speed 1...\r\n" );
    fan3_set_speed( &fan3, FAN3_SPEED1 );
    Delay_ms( 4000 );
    log_printf( &logger, "Speed 3...\r\n" );
    fan3_set_speed( &fan3, FAN3_SPEED3 );
    Delay_ms( 4000 );
    log_printf( &logger, "Speed 5...\r\n" );
    fan3_set_speed( &fan3, FAN3_SPEED5 );
    Delay_ms( 4000 );
    log_printf( &logger, "Speed 7...\r\n" );
    fan3_set_speed( &fan3, FAN3_SPEED7 );
    Delay_ms( 4000 );
    log_printf( &logger, "Stopped...\r\n" );
    fan3_set_speed( &fan3, FAN3_STOPPED );
    Delay_ms( 4000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.