Beginner
10 min

Develop data storage and transfer solution with EN25Q80B and STM32F031K6

Highly reliable serial flash memory with a capacity of 8Mbits

Flash Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

Flash Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Robust and reliable memory solution with a decent storage capacity, advanced write protection, and excellent endurance

A

A

Hardware Overview

How does it work?

Flash Click is based on the EN25Q80B, a serial flash memory from EON Silicon Solutions. The EN25Q80B features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve advanced information from the device, such as the operating characteristics, structure and vendor-specified information, memory size, operating voltage, timing information, and more. Page Program instruction allows up to 256 bytes to be written during one write cycle, although it is possible to write less than that. By automatically incrementing the addresses, it is possible to read the entire memory by a single command. The

EN25Q80B allows the erasure of one sector at a time, half a block at a time, block at a time, and the entire memory. The addition of 512 bytes of one-time programmable (OTP) memory can be useful for building secure storage devices and similar secure storage applications. Flash Click uses a standard 4-Wire SPI serial interface to communicate with the host MCU, supporting Dual SPI and Quad SPI modes, which utilize these two additional modes, allowing faster data transfer speeds several times. There are additional WP for the write protect function and HLD pins. If using Quad SPI, the SDI and SDO become DQ0 and

DQ1, while WP and HLD become DQ2 and DQ3, respectively. Due to a small number of MCUs that support Dual and Quad SPI, MIKROE offers library functions that work only with standard SPI communication, ensuring absolute compatibility with all the supported MCUs. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Flash Click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Not Used / QSPI D3
PA11
RST
SPI Chip Select
PA4
CS
SPI Clock
PB3
SCK
SPI Data OUT / QSPI D1
PB4
MISO
SPI Data IN / QSPI D0
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect / QSPI D2
PA8
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Flash Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
2x4 RGB Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-32 with STM32 MCU MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Flash Click driver.

Key functions:

  • flash_write_page - Page Write function

  • flash_read_page - Page Read function

  • flash_erase_sector - Sector Erase function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file main.c
 * \brief Flash Click example
 *
 * # Description
 * This example demonstrates the use (control) of the FLASH memory.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes all necessary peripherals and pins used by Flash click and also
 * initializes uart logger to show results.
 *
 * ## Application Task
 * Executes memory data writing, reading from the memory to verify data writing
 * operation and sector erasing to clear memory.
 *
 * ## Additional Functions
 * - Enter Data / Allows user to enter a desired data.
 * - Process Wait / Makes a delay to wait while some process be done.
 *
 * \author Nemanja Medakovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include <string.h>
#include "board.h"
#include "log.h"
#include "flash.h"

// ------------------------------------------------------------------ VARIABLES

static flash_t flash;
static log_t logger;
static uint8_t data_buf[ 30 ];
static uint8_t n_data;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void enter_data( unsigned char *buffer )
{
    uint8_t data_size;

    data_size = sizeof( data_buf );

    memset( data_buf, 0, data_size );
    n_data = 0;
    data_size--;

    while ( ( *buffer != 0 ) && ( data_size > 0 ) )
    {
        data_buf[ n_data ] = *buffer;
        buffer++;
        n_data++;
        data_size--;
    }
}

void process_wait( void )
{
    uint8_t cnt;

    for ( cnt = 0; cnt < 9; cnt++ )
    {
        Delay_ms( 400 );
        log_printf( &logger, "****" );
    }

    log_printf( &logger, "\r\n" );
    Delay_ms( 400 );
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init( void )
{
    flash_cfg_t flash_cfg;
    log_cfg_t log_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    
    //  Click initialization.
    flash_cfg_setup( &flash_cfg );
    FLASH_MAP_MIKROBUS( flash_cfg, MIKROBUS_1 );
    flash_init( &flash, &flash_cfg );

    //  Click reset and default configuration.
    flash_reset( &flash );
    flash_default_cfg( &flash );

    log_printf( &logger, "***  Flash Initialization Done.  ***\r\n" );
    log_printf( &logger, "************************************\r\n" );
}

void application_task( void )
{
    enter_data( "Mikroelektronika (MikroE)" );

    log_printf( &logger, "> Data content to be written: %s\r\n", data_buf );
    log_printf( &logger, "> Data writing to memory...\r\n" );
    flash_write_page( &flash, FLASH_MEM_ADDR_FIRST_PAGE_START, data_buf, n_data );
    log_printf( &logger, "> Done.\r\n" );

    memset( data_buf, 0, sizeof( data_buf ) );
    process_wait( );

    log_printf( &logger, "> Data reading from memory...\r\n" );
    flash_read_page( &flash, FLASH_MEM_ADDR_FIRST_PAGE_START, data_buf, n_data );
    log_printf( &logger, "> Done.\r\n> Read data content: %s\r\n", data_buf );

    process_wait( );

    log_printf( &logger, "> Sector erasing...\r\n" );
    flash_erase_sector( &flash, FLASH_MEM_ADDR_FIRST_SECTOR_START );
    log_printf( &logger, "> Done.\r\n" );

    process_wait( );
}

void main( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.