Intermediate
30 min

Unleash the power of LEDs with MCP1664 and STM32F031K6

Illuminate and enchant

MCP1664 Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

MCP1664 Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Illuminate every space confidently using our white LED driver solution, ensuring vibrant, energy-efficient lighting that captivates and enhances any environment

A

A

Hardware Overview

How does it work?

MCP1664 Click is based on four high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip. MCP1664 click is designed to run on either a 3.3V or 5V power supply. It communicates with the target board microcontroller over the PWM pin on the mikroBUS™ line. The click has a power and PWM input to set the light intensity at the desired level. The MCP1664 is a compact, space-efficient, fixed-frequency, non-synchronous step-up converter

optimized to drive multiple strings of LEDs with constant current powered from two and three-cell alkaline or NiMH/NiCd as well as from one-cell Li-Ion or Li-Polymer batteries. The MCP1664 features open load protection (OLP), which turns off the operation when the LED string is accidentally disconnected or the feedback pin is short-circuited to GND. While in Shutdown mode (EN = GND), the device stops switching and consumes 40 nA, typical of the input current. This Click

board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

MCP1664 Click top side image
MCP1664 Click bottom side image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Signal
PA8
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

MCP1664 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
Stepper 22 Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-32 with STM32 MCU Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
STM32 M4 Clicker HA MCU/Select Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for MCP1664 Click driver.

Key functions:

  • mcp1664_pwm_start - Start PWM module

  • mcp1664_pwm_stop - Stop PWM module

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Mcp1664 Click example
 * 
 * # Description
 * This application turn on and turn off white LEDs.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Enables GPIO and PWM, sets the frequency and duty cycle and enables PWM.
 * 
 * ## Application Task  
 * This is a example which demonstrates the use of MCP1664 Click board.
 * It shows how to enable the device and gradualy increase the duty cycle.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "mcp1664.h"

// ------------------------------------------------------------------ VARIABLES

static mcp1664_t mcp1664;
static log_t logger;

static float duty_cycle = 0.5;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    mcp1664_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mcp1664_cfg_setup( &cfg );
    MCP1664_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mcp1664_init( &mcp1664, &cfg );

    mcp1664_set_duty_cycle( &mcp1664, duty_cycle );
    mcp1664_pwm_start( &mcp1664 );
    Delay_ms( 1000 );
    log_printf( &logger, "------------------ \r\n" );
    log_printf( &logger, "  MCP1664  Click   \r\n" );
    log_printf( &logger, "------------------ \r\n" );
    Delay_ms( 100 );
}

void application_task ( void )
{
    //  Task implementation.
    
    if ( duty_cycle > 1 )
    {
        duty_cycle = 0.1;
    }
    
    mcp1664_set_duty_cycle ( &mcp1664, duty_cycle );
    duty_cycle += 0.1;
    Delay_100ms();

    log_printf( &logger,  "  Duty cycle is : %d  \r\n", duty_cycle );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.