Intermediate
30 min

Verify your connections easily and save valuable time during the debugging phase using STM32F031K6

Effortless diagnostics: The ultimate tool for logic level confirmation

Tester Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

Tester Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Our mission is to empower developers with a convenient and user-friendly diagnostic tool that simplifies the hardware testing process, ensuring a smoother development journey

A

A

Hardware Overview

How does it work?

Tester Click is a Click board™ used as a diagnostic tool on the mikroBUS™ socket. It contains an array of 2x6 LEDs, which signalize the presence of the HIGH/LOW logic level on each pin, providing a visual feedback to the developer. Two additional LEDs indicate the presence of +3.3V and +5V on the mikroBUS™ power rails. This simple diagnostic tool can save hours of troubleshooting, saving the

application developer from having to connect various complicated measurement instruments, only to test logic states on the specific mikroBUS™ pins. Each pin of the mikroBUS™ is routed to a red colored LED, which is protected by 1K resistor. This allows voltages up to VCC to be handled with no issues, providing a simple and clean solution for pin state testing. Once placed on the mikroBUS™

socket, no additional settings are required. There are no ICs or other active elements besides the LEDs. Its simplicity makes it very simple to use: as soon as it is connected, red and green power indication LEDs will signalize the presence of +3.3V and +5V on both the mikroBUS™ power rails. The rest of the LED array will be lit according to the state on the respective pin.

Tester Click top side image
Tester Click bottom side image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Analog Output
PA0
AN
Reset
PA11
RST
SPI Chip Select
PA4
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Input
PA8
PWM
Interrupt
PA12
INT
UART TX
PA10
TX
UART RX
PA9
RX
I2C Clock
PB6
SCL
I2C Data
PB7
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Tester Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
2x4 RGB Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-32 with STM32 MCU MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Tester Click driver.

Key functions:

  • tester_set_pin_high - This function sets the output voltage on the specified pin to high

  • tester_set_pin_low - This function sets the output voltage on the specified pin to low

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Tester Click example
 * 
 * # Description
 * This example showcases how to initialize, configure and use the Tester Click. It is a simple
 * GPIO Click which is used to test if all the pins on a MikroBUS are working correctly.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * This function initializes and configures the Click and logger modules.
 * 
 * ## Application Task  
 * This function sets the output on all the pins (one by one) on the left side to high, going
 * from top to bottom and then does the same with the ones on the right side, after which it 
 * sets all pins to high and after one second sets them back to low. 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "tester.h"

// ------------------------------------------------------------------ VARIABLES

static tester_t tester;
static log_t logger;

static digital_out_t *pin_addr[ 12 ] =
{
    &tester.mosi,    // 0 MOSI
    &tester.miso,    // 1 MISO
    &tester.sck,     // 2 SCK
    &tester.cs,      // 3 CS
    &tester.rst,     // 4 RST
    &tester.an,      // 5 AN
    &tester.pwm,     // 6 PWM
    &tester.int_pin, // 7 INT
    &tester.tx_pin,  // 8 TX
    &tester.rx_pin,  // 9 RX
    &tester.scl,     // 10 SCL
    &tester.sda      // 11 SDA
};

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

static void blink ( digital_out_t *pin ) 
{
    tester_set_pin_high( pin );
    Delay_100ms( );
    tester_set_pin_low( pin );
}

static void all_on ( )
{
   int i;

   for( i = 0; i < 12; i++ )
   {
        tester_set_pin_high( pin_addr[ i ] );
   }
}

static void all_off ( )
{
   int i;

   for( i = 0; i < 12; i++ )
   {
        tester_set_pin_low( pin_addr[ i ] );
   }
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( )
{
    log_cfg_t log_cfg;
    tester_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    tester_cfg_setup( &cfg );
    TESTER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    tester_init( &tester, &cfg );
}

void application_task ( )
{
    int i;

    for( i = 0; i < 12; i++ )
    {
        blink( pin_addr[ i ] );
    }

    all_on( );
    Delay_1sec( );
    all_off( );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.