Intermediate
30 min

Combine TPS62869 and TM4C129ENCPDT to accomplish the step-down conversion

It is true. These low values are real!

Buck 22 Click with Fusion for ARM v8

Published Feb 17, 2023

Click board™

Buck 22 Click

Dev Board

Fusion for ARM v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

Step down voltage in the most efficient way

A

A

Hardware Overview

How does it work?

Buck 22 Click is based on the TPS62869, a synchronous step-down converter with an I2C interface from Texas Instruments. The TPS62869 base its work on the DCS-Control™ topology and operates in PWM (pulse width modulation) mode for medium to heavy load conditions and Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal switching frequency of 2.4MHz, having a controlled frequency variation over the input voltage range from the VIN terminal from 2.4 up to 5.5V. The DCS-Control™ topology supports both operation modes (PWM and PFM selectable through a serial interface. The transition from PWM mode to Power Save Mode is  seamless and without effects on the

output voltage, providing an efficient, adaptive, and high power-density solution. With its DCS-Control™ architecture, excellent load transient performance and tight output voltage accuracy are achieved alongside adjustable output voltage and current ranges from 0.8V to 3.35V and up to 6A on the VOUT terminal with a 10mV step size. As the load current decreases, the TPS62869 enters Power Save Mode operation, which occurs when the inductor current becomes discontinuous, reaching 0A during a switching cycle. In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This Click board™ communicates with MCU using the standard I2C 2-Wire interface to read data and configure

settings, supporting a Fast Mode operation up to 400kHz. Besides, it also possesses the power-good function, routed to the red LED marked as PWR and INT pin of the mikroBUS™ socket, indicating that the output reached regulation. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Buck 22 Click hardware overview image

Features overview

Development board

Fusion for ARM v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different ARM® Cortex®-M based MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for ARM v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the Fusion for ARM v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for ARM v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for ARM v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Power-Good Indicator
PQ4
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD2
SCL
I2C Data
PD3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Buck 22 click schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for ARM v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output via UART Mode

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for Buck 22 Click driver.

Key functions:

buck22_set_vout - This function sets the output voltage by using I2C serial interface.

buck22_read_vout - This function reads the output voltage by using I2C serial interface.

buck22_get_pg_pin - This function returns the power good (PG) pin logic state.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Buck 22 Click example
 *
 * # Description
 * This example demonstrates the use of Buck 22 click by changing the output voltage.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and sets the control settings.
 *
 * ## Application Task
 * Changes the output voltage every 3 seconds and displays on the USB UART
 * the currently set voltage output value. It also checks the power good pin indicator.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "buck22.h"

static buck22_t buck22;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    buck22_cfg_t buck22_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    buck22_cfg_setup( &buck22_cfg );
    BUCK22_MAP_MIKROBUS( buck22_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == buck22_init( &buck22, &buck22_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BUCK22_ERROR == buck22_set_control ( &buck22, BUCK22_CONTROL_DEFAULT_SETTING ) )
    {
        log_error( &logger, " Set control." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    if ( !buck22_get_pg_pin ( &buck22 ) )
    {
        log_info ( &logger, " Device is shut down. " );
        while ( !buck22_get_pg_pin ( &buck22 ) );
        log_info ( &logger, " Device is powered up. " );
    }
    static uint16_t vout_mv = BUCK22_VOUT_MIN;
    if ( BUCK22_OK == buck22_set_vout ( &buck22, vout_mv ) )
    {
        if ( BUCK22_OK == buck22_read_vout ( &buck22, &vout_mv ) )
        {
            log_printf ( &logger, " Vout: %u mV\r\n", vout_mv );
        }
    }
    vout_mv += 100;
    if ( vout_mv > BUCK22_VOUT_MAX )
    {
        vout_mv = BUCK22_VOUT_MIN;
    }
    Delay_ms ( 3000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.