Beginner
10 min

Achieve pressure measurements up to 2kPa with MPXV7002 and PIC32MZ2048EFH100

Pressure/Vacuum sensing ideal for automotive and non-automotive applications

Vacuum 2 Click with Flip&Click PIC32MZ

Published Mar 17, 2025

Click board™

Vacuum 2 Click

Dev. board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Measure pressure with high accuracy and reliability in HVAC systems, respiratory monitoring, and process control

A

A

Hardware Overview

How does it work?

Vacuum 2 Click is based on the MPXV7002, an integrated on-chip signal-conditioned, temperature-compensated, and calibrated silicon pressure sensor from NXP. It provides precise pressure measurement capabilities, making it an excellent choice for various industrial and medical applications. At the core of Vacuum 2 Click, the MPXV7002 functions as a piezoresistive transducer built on monolithic silicon technology. It integrates cutting-edge micromachining techniques, thin-film metallization, and bipolar processing to achieve a high-level analog output signal directly proportional to the applied pressure. As a single-port gauge pressure sensor, it employs a patented silicon shear stress strain gauge configuration, enabling

precise pressure measurements. Designed to operate efficiently within a temperature range of +10°C to +60°C, the MPXV7002 ensures stable performance across varying environmental conditions. It offers a pressure measurement range from -2kPa to 2kPa, with a typical sensitivity of 1V/kPa, making it highly suitable for applications that require fine pressure adjustments and monitoring. Common use cases include HVAC systems, respiratory monitoring equipment, and industrial process control, where accurate pressure sensing plays a crucial role in optimizing performance and safety. The MPXV7002's analog output can also be converted to a digital value using MCP3221, a successive approximation A/D

converter with a 12-bit resolution from Microchip, using a 2-wire I2C compatible interface, or sent, as mentioned, directly to an analog output pin of the mikroBUS™ socket labeled as AN. Selection can be performed via an onboard SMD jumper labeled AD SEL, placing it in an appropriate position marked as AN and ADC. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Vacuum 2 Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Analog Output
RB11
AN
NC
NC
RST
ID COMM
RA0
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RA2
SCL
I2C Data
RA3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Vacuum 2 Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

Vacuum 2 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.

Example Description
This example demonstrates the use of the Vacuum 2 Click board. It showcases how to initialize the device, perform zero-pressure offset calibration, and measure pressure in Pascals (Pa).

Key functions:

  • vacuum2_cfg_setup - Config Object Initialization function.

  • vacuum2_init - Initialization function.

  • vacuum2_calib_offset - This function calibrates the zero current offset value.

  • vacuum2_read_vout_avg - This function reads a desired number of sensor voltage output samples and averages it.

  • vacuum2_read_pressure - This function reads the pressure measurement.

Application Init
Initializes the logger and the Vacuum 2 Click driver. The application then performs zero-pressure offset calibration to ensure accurate pressure measurements. During the calibration, it is crucial to avoid applying pressure to the sensor.

Application Task
Continuously reads the pressure from the sensor and logs the values in Pascals (Pa).

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Vacuum 2 Click Example.
 *
 * # Description
 * This example demonstrates the use of the Vacuum 2 Click board. It showcases how to initialize the device, 
 * perform zero-pressure offset calibration, and measure pressure in Pascals (Pa).
 *
 * The demo application is composed of two sections:
 *
 * ## Application Init
 * Initializes the logger and the Vacuum 2 Click driver. The application then performs zero-pressure 
 * offset calibration to ensure accurate pressure measurements. During the calibration, it is crucial to avoid 
 * applying pressure to the sensor.
 *
 * ## Application Task
 * Continuously reads the pressure from the sensor and logs the values in Pascals (Pa).
 *
 * @note
 * The measurable pressure range of the sensor is from -2000 Pa to 2000 Pa.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "vacuum2.h"

static vacuum2_t vacuum2;   /**< Vacuum 2 Click driver object. */
static log_t logger;        /**< Logger object. */

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    vacuum2_cfg_t vacuum2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vacuum2_cfg_setup( &vacuum2_cfg );
    VACUUM2_MAP_MIKROBUS( vacuum2_cfg, MIKROBUS_1 );
    err_t init_flag = vacuum2_init( &vacuum2, &vacuum2_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_printf( &logger, " Calibrating zero pressure offset in 5 seconds...\r\n" );
    log_printf( &logger, " Make sure no pressure is applied to the sensor during the calibration process.\r\n" );
    for ( uint8_t cnt = 5; cnt > 0; cnt-- )
    {
        log_printf( &logger, " %u\r\n", ( uint16_t ) cnt );
        Delay_ms ( 1000 );
    }
    if ( VACUUM2_ERROR == vacuum2_calib_offset ( &vacuum2 ) )
    {
        log_error( &logger, " Calibrate offset." );
        for ( ; ; );
    }
    log_printf( &logger, " Offset calibration DONE.\r\n\n" );
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    int16_t pressure = 0;
    if ( VACUUM2_OK == vacuum2_read_pressure ( &vacuum2, &pressure ) ) 
    {
        log_printf( &logger, " Pressure : %d Pa\r\n\n", pressure );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.