Intermediate
30 min

Design an advanced power management solution with ADP5350 and STM32F417ZG

The ultimate battery management

BATT-MAN 3 Click with Fusion for ARM v8

Published Aug 03, 2023

Click board™

BATT-MAN 3 Click

Dev Board

Fusion for ARM v8

Compiler

NECTO Studio

MCU

STM32F417ZG

Streamline energy consumption, enhance battery safety, and improve overall system efficiency

A

A

Hardware Overview

How does it work?

BATT-MAN 3 Click is based on the ADP5350, an advanced battery management PMIC with inductive boost LED and three LDO regulators from Analog Devices. It combines one high-performance buck regulator for single Li-ion/Li-ion polymer battery charging (also available on the left side header labeled as BUCK), a fuel gauge, a highly programmable boost regulator for LED backlight illumination, one ultralow quiescent current low dropout (LDO) regulator, and two general-purpose LDO regulators. Besides, it supports a USB connection optimized for USB 5V input. The ADP5350 operates in trickle charge mode and constant current (CC)/constant voltage (CV) fast charge mode. It also features an internal field-effect transistor (FET) that permits battery isolation on the system power side. The ADP5350 fuel gauge is a low current-consuming solution optimal for rechargeable Li-Ion battery-powered devices. Its boost regulator operates at a 1.5MHz switching frequency. It can be employed as a constant voltage regulator or supplemental constant current regulator for multiple LED backlight drivers on the VOUT4 terminal. This LED driver can support various LED backlight

configurations, either multiple LEDs in parallel or series connected on the upper-right onboard header. This Click board™ also has a feedback-sensing for the boost regulator, which can be selected for standalone or LED operation mode by positioning the SMD jumpers labeled as MODE SEL to an appropriate position marked as STAL and LED. An additional option has been added for the users to activate or deactivate the Boost and LED part of the board by populating or removing two jumpers, R11 and R9. BATT-MAN 3 Click communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings with a maximum frequency of 400kHz. Also, it uses several GPIO pins, one of which is an interrupt pin, the INT pin of the mikroBUS™ socket, used as a ‘fault’ indicator that immediately notifies the host when a fault occurs. The ADP5350 low dropout (LDO) regulators on top side terminals labeled from VOUT1 to VOUT3 are optimized to operate at low shutdown current and quiescent current to extend battery life. The device is a load switch that can be turned OFF or ON. The I2C interface enables the programmability of all parameters, including status bit readback for

operation monitoring and safety control. This Click board™ uses two LED indicators, labeled as PGOOD and BATT OK, used as power good and charging status indicator alongside the connector on the upper-left side of the board, reserved for a Li-ion/Li-ion polymer battery. PGOOD indicates a good input source, while BATT OK shows the real-time status of the battery voltage. Also, it features battery pack temperature sensing via an internal or external thermistor connected to the onboard header labeled as NTC. This sensing precludes charging when the battery pack temperature exceeds the specified range. A thermistor can be selected by positioning the SMD jumpers labeled as TMP SEL to an appropriate position marked as EXT and INT. This Click board™ can be operated only with a 5V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

BATT-MAN 3 Click hardware overview image

Features overview

Development board

Fusion for ARM v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different ARM® Cortex®-M based MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for ARM v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the Fusion for ARM v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for ARM v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for ARM v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

STMicroelectronics

Pin count

144

RAM (Bytes)

196608

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Battery Status
PE11
RST
Power-Good Indicator
PA4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
NC
NC
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PD3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

BATT-MAN 3 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for ARM v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for BATT-MAN 3 Click driver.

Key functions:

  • battman3_get_battery_voltage - Read battery voltage level

  • battman3_set_ldo_vout - Set voltage output on LDO

  • battman3_set_charge_termination_voltage - Set charge termination voltage

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief BATT-MAN3 Click example
 *
 * # Description
 * This example showcases ability of device to charge battery,
 * and outputs and supply 4 different devices with 3 LDO's and
 * 1 boost channel.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of the communication modules(UART, I2C) and 3 additional
 * input pins(power good, battery ok, and interrupt). Configures device
 * to enable charging, battery voltage monitoring, sets charging termination
 * to 3.7V, charging threshold to 3.1V and dead battery to 2.5V. Enables all
 * 3 LDO's( channel 1 -> 3.3V, channel 2 -> 1.5V, and channel 3 -> 2.5V ). 
 *
 * ## Application Task
 * Reads battery voltage level and logs it. Besides that reads status and logs
 * every change on charging and battery status. If power good flag occurs(PGD 
 * pin goes low) disables LDO's, and reenables them when battery is full(when 
 * battery reaches charging termination voltage).
 *
 * @author Luka Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "battman3.h"

/**
 * @brief BATT-MAN 3 Click LOG delay.
 * @details Macro that specifies delay between logs of battery voltage.
 */
#define LOG_THRESHOLD_1SEC 10
#define LOG_THRESHOLD_3SEC 30
#define LOG_THRESHOLD_5SEC 50

static battman3_t battman3;
static log_t logger;

/**
 * @brief Parse charge status.
 * @details This function reads charge status 1 and 2 
 * and logs @b CHAGER_STATUS and @b BATTERY_STATUS on change.
 * @return Nothing.
 */
static void battman3_charge_status ( void );

/**
 * @brief Enable/Disable all 3 LDO's.
 * @details This function sets state of all 3 LDO's.
 * @param[in] enable : Enable/Disable.
 * @return Nothing.
 */
static void battman3_ldo( uint8_t enable );

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    battman3_cfg_t battman3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    battman3_cfg_setup( &battman3_cfg );
    BATTMAN3_MAP_MIKROBUS( battman3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == battman3_init( &battman3, &battman3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BATTMAN3_ERROR == battman3_default_cfg ( &battman3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    uint8_t temp_data = 0;
    
    battman3_reg_read( &battman3, BATTMAN3_REG_MANUFACTURE_AND_MODEL_ID, &temp_data );
    log_printf( &logger, " > ID: 0x%.2X\r\n", ( uint16_t )temp_data );
    battman3_reg_read( &battman3, BATTMAN3_REG_SILICON_REVSION, &temp_data );
    log_printf( &logger, " > REV: 0x%.2X\r\n", ( uint16_t )temp_data );
    
    //Charging voltage termination
    battman3_set_charge_termination_voltage( &battman3, 3.7 );
    //Charging voltage threshold
    battman3_set_charge_voltage_threshold( &battman3, BATTMAN3_VTRK_DEAD_2p5V, 3.1 );
    //LDO 1
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO1, BATTMAN3_ENABLE );
    battman3_set_ldo_vout( &battman3, BATTMAN3_LDO1, BATTMAN3_LDO_3p30V );
    //LDO 2
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO2, BATTMAN3_ENABLE );
    battman3_set_ldo_vout( &battman3, BATTMAN3_LDO2, BATTMAN3_LDO_1p50V );
    //LDO 3
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO3, BATTMAN3_ENABLE );
    battman3_set_ldo_vout( &battman3, BATTMAN3_LDO3, BATTMAN3_LDO_2p50V );
    
    log_info( &logger, " Application Task " );
    Delay_ms( 500 );
}

void application_task ( void ) 
{
    static counter = 0;
    float vbat = 0; 
    
    if ( !battman3_get_power_good( &battman3 ) )
    {
        battman3_ldo( BATTMAN3_DISABLE );
    }
    
    battman3_charge_status( );
    
    if ( counter >= LOG_THRESHOLD_3SEC )
    {
        counter = 0;
        battman3_get_battery_voltage( &battman3, &vbat );
        log_printf( &logger, " > Battery voltage: %.2f\r\n", vbat );  
        log_printf( &logger, "****************************************************\r\n" );
    }
    counter++;
    Delay_ms( 100 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

static void battman3_charge_status ( void )
{
    static uint8_t charge_status1 = 0;
    static uint8_t charge_status2 = 0;
    uint8_t temp_data = 0;
    battman3_reg_read( &battman3, BATTMAN3_REG_CHARGER_STATUS1, &temp_data );
    temp_data &= 0x7;
    if ( charge_status1 != temp_data )
    {
        charge_status1 = temp_data;
        switch ( charge_status1 )
        {
            case BATTMAN3_CHARGE_STATUS1_OFF:
            {
                log_printf( &logger, " > Charge status: off\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_TRICLE_CHARGE:
            {
                log_printf( &logger, " > Charge status: tricle charge\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_FAST_CHARGE_CC:
            {
                log_printf( &logger, " > Charge status: fast charge(CC mode)\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_FAST_CHARGE_CV:
            {
                battman3_ldo( BATTMAN3_ENABLE );/*< Battery is full reenable LDO's*/
                log_printf( &logger, " > Charge status: fast charge(CV mode)\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_CHARGE_COMPLETE:
            {
                log_printf( &logger, " > Charge status: charge complete\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_SUSPEND:
            {
                log_printf( &logger, " > Charge status: suspend\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_TIMER_EXPIRED:
            {
                log_printf( &logger, " > Charge status: ticle, fast or safety charge timer expired\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS1_BATTERY_DETECTION:
            {
                log_printf( &logger, " > Charge status: battery detection\r\n" );
                break;
            }
            default:
            {
                log_error( &logger, " Status." );
                break;
            }
        }
    }
    battman3_reg_read( &battman3, BATTMAN3_REG_CHARGER_STATUS2, &temp_data );
    temp_data &= 0x07;
    if ( charge_status2 != temp_data )
    {
        charge_status2 = temp_data;
        switch ( charge_status2 )
        {
            case BATTMAN3_CHARGE_STATUS2_BATTERY_MONITOR_OFF:
            {
                log_printf( &logger, " > Battery monitor off\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS2_NO_BATTERY:
            {
                log_printf( &logger, " > No battery\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS2_VBSNS_LESSTHEN_VTRK:
            {
                log_printf( &logger, " > Battery voltage less then trickle threshold\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS2_VBSNS_MIDDLE_VRK_VWEAK:
            {
                log_printf( &logger, " > Battery voltage in middle between tricle and weak threshold\r\n" );
                break;
            }
            case BATTMAN3_CHARGE_STATUS2_VBSNS_MORETHEN_VWEAK:
            {
                log_printf( &logger, " > Battery voltage more then weak threshold\r\n" );
                break;
            }
            default:
            {
                log_error( &logger, " Status." );
                break;
            }
        }
    }
}

static void battman3_ldo( uint8_t enable )
{
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO1, enable );
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO2, enable );
    battman3_set_ldo_state( &battman3, BATTMAN3_LDO3, enable );
}

// ------------------------------------------------------------------------ END

Additional Support

Resources