Intermediate
30 min

Empower your systems with DAC128S085 and TM4C129ENCPDT

Where bits find their voice in the form of analog voltage

DAC 11 Click with Fusion for Tiva v8

Published Aug 19, 2023

Click board™

DAC 11 Click

Dev. board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

From sensors to control circuits, this solution bridges the gap between digital data and analog actions, enhancing your ability to drive insights

A

A

Hardware Overview

How does it work?

DAC 11 Click is based on the DAC128S085, a general-purpose 12-bit 8-channel digital-to-analog converter (DAC) from Texas Instruments. The DAC128S085 is fabricated on a CMOS process with an architecture that consists of switches and resistor strings followed by an output buffer. It ensures monotonicity, low power consumption of 4.85mW at 5V, individual channel power-down capability, and has high precision output amplifier that allows rail-to-rail output swing over a wide supply voltage range. DAC architecture consists of 4096 equal-valued resistors with a switch at each junction of two resistors, plus a switch to ground. The code loaded into the DAC register determines

which switch is closed, connecting the right node to the amplifier. Because all eight channels of the DAC128S085 can be controlled independently, each consists of a DAC register and a 12-bit DAC. Depending on the mode of operation, data written into a DAC register causes the 12-bit DAC output to be updated, or an additional command is required to update the DAC output. Also, a Power-On reset circuit ensures that the DAC outputs power up to zero volts and remains there until there is a valid write to the device. The DAC 11 Click communicates with MCU using the SPI serial interface compatible with standard QSPI, MICROWIRE, and DSP interfaces, with a maximum

frequency of 50 MHz. Also, this Click board™ is designed to utilize the entire dynamic range of DAC128S085 by having all power supply pins (and reference voltage pins) connected, sharing the same supply voltage. In addition, the user can further use the RC filter at the output to roll off output noise. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

DAC 11 Click top side image
DAC 11 Click bottom side image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PH0
CS
SPI Clock
PQ0
SCK
SPI Data OUT
PQ3
MISO
SPI Data IN
PQ2
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

DAC 11 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for DAC 11 Click driver.

Key functions:

  • dac11_write_control_reg - This function writes data to a single control register by using SPI serial interface

  • dac11_set_all_ch_voltage - This function sets the output voltage of all channels depending on the vref value

  • dac11_set_specific_ch_voltage - This function sets the output voltage of the specific channels depending on the vref value

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief DAC11 Click example
 *
 * # Description
 * This example demonstrates the use of DAC 11 Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and executes the Click default configuration which sets the WRM mode and
 * disables all outputs.
 *
 * ## Application Task
 * Changes the output voltage of all channels every 2 seconds and logs the voltage value on the USB UART.
 * It will go through the entire voltage range taking into account the number of steps which is defined below.
 *
 * @note
 * Measure the voltage at VCC_SEL jumper and adjust the reference voltage value below for better accuracy.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "dac11.h"

#define REFERENCE_VOLTAGE  3.3 // The reference voltage defined by the VCC_SEL on-board jumper. 
#define NUMBER_OF_STEPS    20  // The number of steps by which we will divide the entire voltage range. 

static dac11_t dac11;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;      /**< Logger config object. */
    dac11_cfg_t dac11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    dac11_cfg_setup( &dac11_cfg );
    DAC11_MAP_MIKROBUS( dac11_cfg, MIKROBUS_1 );
    err_t init_flag  = dac11_init( &dac11, &dac11_cfg );
    if ( SPI_MASTER_ERROR == init_flag )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    dac11_default_cfg ( &dac11 );
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    float step = REFERENCE_VOLTAGE / NUMBER_OF_STEPS;
    float output_voltage = step;
    uint8_t cnt = 0;
    while ( cnt < NUMBER_OF_STEPS )
    {
        dac11_set_all_ch_voltage ( &dac11, REFERENCE_VOLTAGE, output_voltage );
        log_printf( &logger, " All channels output voltage set to %.2f V\r\n", output_voltage );
        
        output_voltage += step;
        cnt++;
        Delay_ms ( 1000 ); 
        Delay_ms ( 1000 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.