Intermediate
30 min

Experience the vast canvas of possibilities with green LED matrix based on IS31FL3733 and STM32F302VC

Green glow extravaganza

16x12 G Click with CLICKER 4 for STM32F302VCT6

Published Jul 22, 2025

Click board™

16x12 G Click

Dev. board

CLICKER 4 for STM32F302VCT6

Compiler

NECTO Studio

MCU

STM32F302VC

Illuminate your imagination and infuse your projects with eco-friendly brilliance using our 16x12 green LED matrix, where every pixel is an opportunity to craft dynamic, energy-efficient visuals that captivate, inform, and inspire

A

A

Hardware Overview

How does it work?

16x12 G Click carries a 16x12 LED display and the IS31FL3733 matrix driver. The click is designed to run on either a 3.3V or 5V power supply. It communicates with the target microcontroller over the I2C interface and the following pins on the mikroBUS™ line: INT, RST, and CS. Each LED can be controlled individually for on/off control

and light intensity. The IS31FL3733 is a general purpose 12×16 LED matrix driver with a 1/12 cycle rate. Each of the 192 LEDs can be dimmed individually with 8-bit PWM data, which allows 256 steps of linear dimming. The driver has selectable 3 Auto Breath Modes for each LED ( ABM-1, ABM-2, and ABM-3). This Click board™ can operate with

either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

16x12 G Click top side image
16x12 G Click bottom side image

Features overview

Development board

Clicker 4 for STM32F3 is a compact development board designed as a complete solution, you can use it to quickly build your own gadgets with unique functionalities. Featuring a STM32F302VCT6, four mikroBUS™ sockets for Click boards™ connectivity, power managment, and more, it represents a perfect solution for the rapid development of many different types of applications. At its core, there is a STM32F302VCT6 MCU, a powerful microcontroller by STMicroelectronics, based on the high-

performance Arm® Cortex®-M4 32-bit processor core operating at up to 168 MHz frequency. It provides sufficient processing power for the most demanding tasks, allowing Clicker 4 to adapt to any specific application requirements. Besides two 1x20 pin headers, four improved mikroBUS™ sockets represent the most distinctive connectivity feature, allowing access to a huge base of Click boards™, growing on a daily basis. Each section of Clicker 4 is clearly marked, offering an intuitive and clean interface. This makes working with the development

board much simpler and thus, faster. The usability of Clicker 4 doesn’t end with its ability to accelerate the prototyping and application development stages: it is designed as a complete solution which can be implemented directly into any project, with no additional hardware modifications required. Four mounting holes [4.2mm/0.165”] at all four corners allow simple installation by using mounting screws. For most applications, a nice stylish casing is all that is needed to turn the Clicker 4 development board into a fully functional, custom design.

CLICKER 4 for STM32F302VCT6 double image

Microcontroller Overview

MCU Card / MCU

STM32F302VC Image

Architecture

ARM Cortex-M4

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

100

RAM (Bytes)

40960

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PC15
RST
Standby Mode
PA4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PD0
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB10
SCL
I2C Data
PB11
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

16x12 G Click Schematic schematic

Step by step

Project assembly

PIC32MZ MXS Data Capture Board front image hardware assembly

Start by selecting your development board and Click board™. Begin with the CLICKER 4 for STM32F302VCT6 as your development board.

PIC32MZ MXS Data Capture Board front image hardware assembly
Thermo 21 Click front image hardware assembly
Thermo 21 Click complete accessories setup image hardware assembly
Board mapper by product6 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC32MZ MXS Data Capture Board NECTO MCU Selection Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto image step 11 hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for 16x12 G Click driver.

Key functions:

  • c16x12g_display_image - Display image function

  • c16x12g_display_byte - Display one byte function

  • c16x12g_display_text - Display text with scroll function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief 16x12 Click example
 * 
 * # Description
 * This application draw image on the led matrics.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization default device configuration, sets LED mode, 
 * configuration ABM and display one character.
 * 
 * ## Application Task  
 * Clear display, display one by one leds, display one character,
 * display image and display text with scroll.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "c16x12.h"

// ------------------------------------------------------------------ VARIABLES

static c16x12_t c16x12;
static log_t logger;

static uint8_t scroll_speed = 50;
static c16x12_abm_t abm_1;
static c16x12_abm_t abm_2;


char demo_text[ 7 ] = "MikroE";
uint16_t demo_image_light[ 12 ] = 
{ 0x0000, 0x0666, 0x0CCC, 0x1998, 0x3330, 0x6660, 0x3330, 0x1998, 0x0CCC, 0x0666, 0x0000, 0x0000 };
uint16_t demo_image_dark[ 12 ]  = 
{ 0xFFFF, 0xF999, 0xF333, 0xE667, 0xCCCF, 0x999F, 0xCCCF, 0xE667, 0xF333, 0xF999, 0xFFFF, 0xFFFF };

char name[] = "16x12";


// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    c16x12_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c16x12_cfg_setup( &cfg );
    C16X12_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c16x12_init( &c16x12, &cfg );

    c16x12g_device_reset( &c16x12 );
    Delay_ms ( 1000 );

    c16x12_default_cfg( &c16x12 );
    c16x12g_set_global_current_control( &c16x12, 255 );
    c16x12g_set_leds_mode( &c16x12, C16X12G_LED_MODE_ABM1 );

    abm_1.time_1     = C16X12G_ABM_T1_840MS;
    abm_1.time_2     = C16X12G_ABM_T2_840MS;
    abm_1.time_3     = C16X12G_ABM_T3_840MS;
    abm_1.time_4     = C16X12G_ABM_T4_840MS;
    abm_1.loop_begin = C16X12G_ABM_LOOP_BEGIN_T1;
    abm_1.loop_end   = C16X12G_ABM_LOOP_END_T3;
    abm_1.loop_times = C16X12G_ABM_LOOP_FOREVER;
    
    abm_2.time_1     = C16X12G_ABM_T1_210MS;
    abm_2.time_2     = C16X12G_ABM_T2_0MS;
    abm_2.time_3     = C16X12G_ABM_T3_210MS;
    abm_2.time_4     = C16X12G_ABM_T4_0MS;
    abm_2.loop_begin = C16X12G_ABM_LOOP_BEGIN_T1;
    abm_2.loop_end   = C16X12G_ABM_LOOP_END_T3;
    abm_2.loop_times = C16X12G_ABM_LOOP_FOREVER;
    
    c16x12g_config_abm( &c16x12, C16X12G_ABM_NUM_1, &abm_2 );
    c16x12g_start_abm( &c16x12 );
    c16x12g_display_text( &c16x12, &name[ 0 ], 5, scroll_speed );

    c16x12g_config_abm( &c16x12, C16X12G_ABM_NUM_1, &abm_1 );
    c16x12g_start_abm( &c16x12 );
    c16x12g_display_byte( &c16x12, 'G' );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    c16x12g_config_abm( &c16x12, C16X12G_ABM_NUM_1, &abm_2 );
    c16x12g_start_abm( &c16x12 );
}

void application_task ( void )
{
    uint8_t cnt = 0;
    
    c16x12g_display_text( &c16x12, &demo_text[ 0 ], 6, scroll_speed );

    c16x12g_clear_display( &c16x12 );

    // Display point
    for ( cnt = 1; cnt <= 12; cnt++ )
    {
        c16x12g_set_led( &c16x12, cnt, cnt, C16X12G_LED_STATE_ON, C16X12G_STOP_SETTINGS );
        Delay_ms ( 100 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    c16x12g_display_image( &c16x12, &demo_image_light[ 0 ] );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
     
    c16x12g_display_image( &c16x12, &demo_image_dark[ 0 ] );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.