10 min

Upgrade data acquisition process with MCP3428 and STM32F411RE

Unleash your data's true potential

ADC 3 Click with UNI-DS v8

Published May 31, 2023

Click board™

ADC 3 Click

Development board



NECTO Studio



Achieve unparalleled data accuracy in your designs with our top-of-the-line ADC



Hardware Overview

How does it work?

ADC 3 Click is based on the MCP3428, a differential multi-channel low-power, 16-bit ΔΣ A/D converter from Microchip. The MCP3428 contains an input channel selection multiplexer (CH1, CH2, CH3, or CH4), an onboard voltage reference, and an internal oscillator. It performs conversions at rates of 15, 60, or 240 samples per second (12, 14, or 16 bits), depending on user-controllable configuration bit settings, and has a programmable gain amplifier (x1, x2, x4, or x8) which makes it an ideal choice for monitoring extremely low-voltage sensors. All four channels have differential inputs monitoring a full-scale range of 4.096VDC or ±2.048V differentially. The MCP3428 has two conversion modes: Continuous and One-Shot mode. In the Continuous

Conversion mode, the ADC converts the inputs continuously, while in the One-Shot Conversion mode, the MCP3428 converts the input once and stays in the low-power Standby mode until it receives another command for a new conversion. The standby mode reduces current consumption significantly during idle periods. This ADDC can be used for various high-accuracy analog-to-digital data conversion applications where ease of use and low power consumption are significant considerations. ADC 3 Click communicates with an MCU using the standard I2C 2-Wire interface to read data and configure settings, supporting High-Speed Mode up to 3.4MHz. It also has a 7-bit slave address with the first four MSBs fixed to 1101. The address pins, ADR0 and ADR1, are

programmed by the user and determine the value of the last three LSBs of the slave address, allowing up to 8 devices to operate on the same bus segment. The value of these address pins can be set by positioning onboard SMD jumpers labeled as I2C ADR to an appropriate position marked as 0 or 1. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the PWR SEL jumper. This way, it is allowed for both 3.3V and 5V capable MCUs to use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

ADC 3 Click hardware overview image

Features overview

Development board

UNI-DS v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different STM32, Kinetis, TIVA, CEC, MSP, PIC, dsPIC, PIC32, and AVR MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, UNI-DS v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the UNI-DS v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector. Communication options such as USB-UART, USB

HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. UNI-DS v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI-DS v8 horizontal image

Microcontroller Overview

MCU Card / MCU



8th Generation


ARM Cortex-M4

MCU Memory (KB)


Silicon Vendor


Pin count


RAM (Bytes)


Used MCU Pins

mikroBUS™ mapper

Power Supply
I2C Clock
I2C Data
Power Supply

Take a closer look


ADC 3 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI-DS v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for ADC 3 Click driver.

Key functions:

  • adc3_default_cfg - This function is used to initiate general call reset.

  • adc3_read_voltage - This function is used to read ADC value and calculate voltage.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

 * \file 
 * \brief Adc3 Click example
 * # Description
 * ADC 3 Click represent 16-bit multichannel analog-to-digital converter. 
 * The click has four pairs of screw terminals onboard, letting you access the chip’s four differential input channels.
 * The demo application is composed of two sections :
 * ## Application Init 
 * Application Init performs Logger and Click initialization.
 * ## Application Task  
 * This is an example that shows the capabilities of the ADC 3 Click 
 * by taking voltage measurements from all four channel. Results are being sent to the UART Terminal 
 * where you can track their changes. All data logs write on USB UART and changes for every 1 sec.
 * \author Mihajlo Djordjevic
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "adc3.h"

// ------------------------------------------------------------------ VARIABLES

static adc3_t adc3;
static log_t logger;

static float read_volt;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
    log_cfg_t log_cfg;
    adc3_cfg_t cfg;

     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    adc3_cfg_setup( &cfg );
    adc3_init( &adc3, &cfg );
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ------ ADC 3 Click ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    adc3_default_cfg( &adc3 );
    Delay_ms ( 100 );
    log_printf( &logger, " -- Initialization done --\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );

void application_task ( void )

    read_volt = adc3_read_voltage( &adc3, ADC3_SELECT_CHANNEL_1, ADC3_SAMPLE_RATE_12, ADC3_PGA_GAIN_X1 );
    Delay_ms( 100 );
    log_printf( &logger, "Channel 1 : %0.2f  V \r\n", read_volt );

    read_volt = adc3_read_voltage( &adc3, ADC3_SELECT_CHANNEL_2, ADC3_SAMPLE_RATE_12, ADC3_PGA_GAIN_X1 );
    Delay_ms( 100 );
    log_printf( &logger, "Channel 2 : %0.2f  V \r\n", read_volt );
    read_volt = adc3_read_voltage( &adc3, ADC3_SELECT_CHANNEL_3, ADC3_SAMPLE_RATE_12, ADC3_PGA_GAIN_X1 );
    Delay_ms( 100 );
    log_printf( &logger, "Channel 3 : %0.2f  V \r\n", read_volt );
    read_volt = adc3_read_voltage( &adc3, ADC3_SELECT_CHANNEL_4, ADC3_SAMPLE_RATE_12, ADC3_PGA_GAIN_X1 );
    Delay_ms( 100 );
    log_printf( &logger, "Channel 4 : %0.2f  V \r\n", read_volt );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms( 1000 );

void main ( void )
    application_init( );

    for ( ; ; )
        application_task( );

// ------------------------------------------------------------------------ END

Additional Support