Discover how proximity detection goes beyond convenience, enabling you to effortlessly navigate your digital and physical worlds
A
A
Hardware Overview
How does it work?
Proximity 14 Click is based on the VCNL36825T, a new fully integrated proximity sensor designed to increase efficiency and performance in consumer and industrial applications from Vishay Semiconductors. Featuring a vertical-cavity surface-emitting laser (VCSEL), the VCNL36825T combines a photodiode, signal processing IC, and 12-bit ADC in a compact SMD package with a small 1.6mm light hole. With a range of 20cm, it also provides collision detection and features low power consumption down to 6.63µA to increase efficiency in these applications. The VCNL36825T simplifies the use and design of a proximity sensor,
as no mechanical barriers are required to isolate the emitter from the detector optically. The proximity sensor uses intelligent cancellation to eliminate cross-talk, while a smart persistence scheme ensures accurate sensing and faster response time. The VCSEL wavelength peaks at 940nm and has no visible “red tail”. Proximity 14 Click communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings, supporting Standard Mode operation with a clock frequency up to 100kHz and Fast Mode up to 400kHz. It also features an intelligent interrupt function that enables the sensor to work
independently until a predefined proximity event or threshold occurs. It then sets an interrupt that requires the MCU to awaken, which reduces power consumption by eliminating polling communication traffic between the sensor and the MCU. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access
anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.
Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Type
8th Generation
Architecture
ARM Cortex-M4
MCU Memory (KB)
512
Silicon Vendor
Texas Instruments
Pin count
128
RAM (Bytes)
262144
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Proximity 14 Click driver.
Key functions:
proximity14_generic_write
- Writing functionproximity14_generic_read
- Reading functionproximity14_get_int
- Get INT pin state
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief Proximity14 Click example
*
* # Description
* This example showcases the ability of the device to read proximity
* value. It can be configured to detect objects up to 20cm of distance.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization of host communication modules (UART, I2C) and
* additional pins. Reads device ID and sets default configuration.
*
* ## Application Task
* In span of 100ms reads proximity data from device and logs result.
*
* @author Luka Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "proximity14.h"
static proximity14_t proximity14;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
proximity14_cfg_t proximity14_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
proximity14_cfg_setup( &proximity14_cfg );
PROXIMITY14_MAP_MIKROBUS( proximity14_cfg, MIKROBUS_1 );
err_t init_flag = proximity14_init( &proximity14, &proximity14_cfg );
if ( I2C_MASTER_ERROR == init_flag )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
init_flag |= proximity14_default_cfg ( &proximity14 );
if ( PROXIMITY14_OK != init_flag )
{
log_error( &logger, " Default configuration. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
uint16_t temp_data = 0;
init_flag = proximity14_generic_read( &proximity14, PROXIMITY14_REG_ID, &temp_data );
log_printf( &logger, " > ID: 0x%.4X\r\n", temp_data );
log_info( &logger, " Application Task " );
Delay_ms( 1000 );
}
void application_task ( void )
{
uint16_t temp_data = 0;
proximity14_generic_read( &proximity14, PROXIMITY14_REG_DATA, &temp_data );
log_printf( &logger, " > Data: %u\r\n", temp_data );
Delay_ms( 100 );
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END