Beginner
10 min
1

Develop reliable and durable nonvolatile memory solution with FT24C08A and dsPIC30F4013

Retain stored data even when the power is turned off

EEPROM Click with EasyPIC v7 for dsPIC30

Published Jun 18, 2023

Click board™

EEPROM Click

Development board

EasyPIC v7 for dsPIC30

Compiler

NECTO Studio

MCU

dsPIC30F4013

Dependable and long-lasting way to store information in electronic devices with enhanced write protection

A

A

Hardware Overview

How does it work?

EEPROM Click is based on the FT24C08A, 8Kb EEPROM with an I2C interface and Write Protection Mode from Fremont Micro Devices. The FT24C08A is organized as 1024 words of 8 bits (1 byte) each. The FT24C08A has 64 pages, respectively. Since each page has 16 bytes, random word addressing to FT24C08A will require 10 bits of data word addresses, respectively. It benefits from a wide power supply range and 100 years of data retention combining high reliability and lasting one million full-memory read/write/erase cycles. This Click board™ communicates with

MCU using the standard I2C 2-Wire interface with clock frequency that supports a Fast-Plus (1MHz) mode of operation. The FT24C08A also has a 7-bit slave address with the first five MSBs fixed to 1010. The address pins A0, A1, and A2 are programmed by the user and determine the value of the last three LSBs of the slave address, which can be selected by positioning onboard SMD jumpers labeled as ADDR SEL to an appropriate position marked as 0 or 1. Also, the configurable Write Protection function, labeled WP routed to the PWM pin of the mikroBUS™ socket, allows the

user to protect the whole EEPROM array from programming, thus protecting it from Write instructions. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

EEPROM Click hardware overview image

Features overview

Development board

EasyPIC v7 for dsPIC30 is the seventh generation of PIC development boards specially designed to develop embedded applications rapidly. It supports a wide range of 16-bit PIC microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With three different connectors for each port, EasyPIC v7 for dsPIC30 allows you to connect accessory boards, sensors, and custom electronics more efficiently

than ever. Each part of the EasyPIC v7 for dsPIC30 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use various external power sources, including an external 12V power supply, 7-23V AC or 9-32V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B) connector.

Communication options such as USB-UART, RS-232, and CAN are included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit dsPIC/PIC24 MCUs. EasyPIC v7 for dsPIC30 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyPIC v7 for dsPIC30 horizontal image

Microcontroller Overview

MCU Card / MCU

dsPIC30F4013

Architecture

dsPIC

MCU Memory (KB)

48

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect
RD2
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RF3
SCL
I2C Data
RF2
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

EEPROM Click Schematic schematic

Step by step

Project assembly

EasyPIC v7 for dsPIC30 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyPIC v7 for dsPIC30 as your development board.

EasyPIC v7 for dsPIC30 front image hardware assembly
Buck 22 Click front image hardware assembly
MCU DIP 40 hardware assembly
EasyPIC for dsPIC30 v7 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for EEPROM Click driver.

Key functions:

  • eeprom_write_page - Page Write function

  • eeprom_read_sequential - Sequential Read function

  • eeprom_write_protect - Write Protect function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file main.c
 * \brief Eeprom Click example
 *
 * # Description
 * This is a example which demonstrates the use of EEPROM Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init 
 * Initializes peripherals and pins used by EEPROM Click.
 * Initializes SPI serial interface and puts a device to the initial state.
 *
 * ## Application Task
 * First page of memory block 1 will be written with data values starting from
 * 1 to 16. This memory page will be read by the user, to verify successfully
 * data writing. Data writing to memory will be protected upon memory writing,
 * and before memory reading.
 *
 * \author Nemanja Medakovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include <string.h>
#include "board.h"
#include "log.h"
#include "eeprom.h"


// ------------------------------------------------------------------ VARIABLES

static eeprom_t eeprom;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init( void )
{
    eeprom_cfg_t eeprom_cfg;
    log_cfg_t log_cfg;

    //  Click initialization.
    eeprom_cfg_setup( &eeprom_cfg );
    EEPROM_MAP_MIKROBUS( eeprom_cfg, MIKROBUS_1 );
    eeprom_init( &eeprom, &eeprom_cfg );

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
}

void application_task( void )
{
    uint8_t transfer_data[ EEPROM_NBYTES_PAGE ];
    uint8_t read_buff[ EEPROM_NBYTES_PAGE ] = { 0 };
    uint8_t cnt;
    uint8_t tmp = EEPROM_BLOCK_ADDR_START;

    transfer_data[ EEPROM_BLOCK_ADDR_START ] = 1;

    for (cnt = EEPROM_BLOCK_ADDR_START + 1; cnt < EEPROM_NBYTES_PAGE; cnt++)
    {
        transfer_data[ cnt ] = transfer_data[ cnt - 1 ] + 1;
    }

    eeprom_write_enable( &eeprom );
    eeprom_write_page( &eeprom, tmp, transfer_data );
    eeprom_write_protect( &eeprom );

    Delay_ms( 1000 );
    memset( transfer_data, 0, sizeof(transfer_data) );

    eeprom_read_sequential( &eeprom, EEPROM_BLOCK_ADDR_START, EEPROM_NBYTES_PAGE, read_buff );

    for (cnt = EEPROM_BLOCK_ADDR_START; cnt < EEPROM_NBYTES_PAGE; cnt++)
    {
        log_printf( &logger, " %u", ( uint16_t )read_buff[ cnt ] );
        Delay_ms( 300 );
    }
    log_printf( &logger, "\r\n" );
}

void main( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources