Intermediate
30 min

Safeguard your projects with intelligent power switching based on BTS7008-1EPA and PIC32MZ1024EFH064

High-side brilliance: Precision control for 10A loads and high inrush currents

PROFET Click - 10A with PIC32MZ clicker

Published Oct 12, 2023

Click board™

PROFET Click - 10A

Dev Board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

Redefine power switching technology through our smart high-side solution, which handles 10A load and high inrush current while safeguarding your system with ReverSave™ reverse polarity protection.

A

A

Hardware Overview

How does it work?

PROFET Click - 10A is based on the BTS7008-1EPA, a single-channel, smart high-side power switch with embedded protection and diagnosis features from Infineon Technologies. The BTS7008-1EPA has a driving capability suitable for 10A loads and comes equipped with "ReverseON" functionality, which causes the power transistor to switch on in case of reverse polarity. It also offers outstanding energy efficiency with reduced current consumption, state-of-art current sense accuracy, and faster switching/slew rate with no impact on EMC, making it suitable for resistive, inductive, and capacitive loads, replacement of electromechanical relays, fuses, and discrete circuits, and many more. This Click board™ uses three digital pins for direct control. The input pin marked as IN routed to the PWM pin of the

mikroBUS™ socket activates the corresponding output channel labeled VOUT. Also, the Diagnosis Enable (DEN) pin routed to the CS pin of the mikroBUS™ socket controls the diagnosis and protection circuitry. Combined with IN pins, it enables the selection of appropriate operating states: Sleep, Stand-by, and Active Mode. The BTS7008-1EPA is protected against overtemperature, overload, reverse power supply (GND and VIN are reverse supplied), and overvoltage. Overtemperature and overload protection work when the device is not in Sleep mode, while overvoltage protection works in all operation modes. For diagnosis purposes, the BTS7008-1EPA combines digital and analog signals at the AN pin of the mikroBUS™ socket. The PROFET Click supports an external power

supply for the BTS7008-1EPA, which can be connected to the input terminal labeled as VIN and should be within the range of 6V to 18V. VIN has an undervoltage detection circuit, which prevents the activation of the power output stages and diagnosis if the applied voltage is below the undervoltage threshold. A power supply indication, red LED labeled as VIN, indicates the presence of an external power supply. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

PROFET Click - 10A hardware overview image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Diagnosis Signal
RE4
AN
NC
NC
RST
Diagnosis Enable
RG9
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Output Channel Activation
RB3
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

PROFET Click - 10A Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Micro B Connector Clicker Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for PROFET Click - 10A driver.

Key functions:

  • profet_read_an_pin_voltage - PROFET read AN pin voltage level function

  • profet_set_mode - PROFET set mode

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief PROFET 10A Click Example.
 *
 * # Description
 * This example showcases the ability of the PROFET 10A Click board.
 * It configures Host MCU for communication and then enables 
 * and disables output channel. Besides that, it reads the voltage 
 * of IS pin and calculates current on output.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of the communication modules(ADC and UART) 
 * and additional pins for controlling the device.
 *
 * ## Application Task
 * On every iteration of the task device switches between 
 * DIAGNOSTIC and OFF mode while it reads the voltage of IS pin 
 * and with that calculates current on output.
 * 
 * @note
 * Formula for calculating current on load: 
 * I_load = voltage(IS) x kILIS / 1.2 kΩ
 *
 * Click board won't work properly on the PIC18F97J94 MCU card.
 * 
 * @author Luka FIlipovic
 *
 */

#include "board.h"
#include "log.h"
#include "profet10a.h"

static profet10a_t profet10a;   /**< PROFET 10A Click driver object. */
static log_t logger;    /**< Logger object. */

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    profet10a_cfg_t profet10a_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    profet10a_cfg_setup( &profet10a_cfg );
    PROFET10A_MAP_MIKROBUS( profet10a_cfg, MIKROBUS_1 );
    if ( profet10a_init( &profet10a, &profet10a_cfg ) == ADC_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    
    profet10a_set_mode( &profet10a, PROFET10A_DIAGNOSTIC_ON );
    Delay_ms( 1000 );
}

void application_task ( void )
{
    static uint8_t mode = PROFET10A_DIAGNOSTIC_ON;
    float profet10a_an_voltage = 0;
    
    profet10a_set_mode( &profet10a, mode );
    
    if ( PROFET10A_DIAGNOSTIC_ON == profet10a.mode )
    {
        mode = PROFET10A_MODE_OFF;
        log_printf( &logger, " > Output ON diagnostic mode\r\n" );
        Delay_ms( 2000 );
    }
    else
    {
        mode = PROFET10A_DIAGNOSTIC_ON;
        log_printf( &logger, " > Output OFF\r\n" );
    }

    if ( profet10a_read_an_pin_voltage ( &profet10a, &profet10a_an_voltage ) != ADC_ERROR )
    {
        log_printf( &logger, " > IS Voltage \t~ %.3f[V]\r\n", profet10a_an_voltage );
        
        float current = profet10a_an_voltage * profet10a.kilis / profet10a.rsens;
        log_printf( &logger, " > OUT Current \t~ %.3f[A]\r\n", current );
    }  
    
    log_printf( &logger, "*******************************************\r\n" );
    
    Delay_ms( 2000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.