Intermediate
30 min

Empower your projects with SPI isolation using ISO7741 and MK64FN1M0VDC12

The silent hero of signal isolation

SPI Isolator 2 Click with Clicker 2 for Kinetis

Published Oct 26, 2023

Click board™

SPI Isolator 2 Click

Dev. board

Clicker 2 for Kinetis

Compiler

NECTO Studio

MCU

MK64FN1M0VDC12

Using our SPI isolator, you can effectively break electrical connections between different circuit parts, preventing interference, noise, and voltage mismatches that can disrupt data transmission

A

A

Hardware Overview

How does it work?

SPI Isolator 2 Click is based on the ISO7741, a high-performance quad-channel digital isolator capable of galvanic isolation up to 5000Vrms from Texas Instruments. It provides high electromagnetic immunity and low emissions at low power consumption while isolating digital I/Os. It has three forward and one reverse-direction channel and provides a compact solution for isolated SPI data communication. Each isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide insulation barrier. The ISO7741 digital isolator uses single-ended CMOS-logic switching technology and transmits the digital data across the isolation barrier. The transmitter sends a high-frequency carrier across the isolation barrier to represent one digital state and sends no signal to represent the other digital

state. After advanced signal conditioning, the receiver demodulates the signal and produces the output through a buffer stage. If the Enable pin is in a low logic state, the output signal goes to a Hi-Z state. SPI Isolator 2 Click communicates with MCU using the SPI serial interface with a maximum data rate of 100 Mbps. This Click board™ also comes with two enable pins on each side, which can be used to put the respective outputs in a Hi-Z state for multi-master driving applications and reduce power consumption. The enable pin on the digital side of ISO7741, labeled EN1, is routed on the RST pin of the mikroBUS™ socket, while the other Enable pin is connected to the external connector on the isolated side labeled as EN2. In addition to the connectors to which the isolated SPI data communication lines are

routed, this Click board™ has another additional representing an external power supply terminal. The voltage range is from 2.25 V to 5.5 V for supply logic and external, making it suitable for both 3.3V and 5V MCUs. The ISO7741 can also block high voltages, isolate grounds, and prevent noise currents on a data bus or other circuits from entering the local ground and damaging sensitive circuitry. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

SPI Isolator 2 Click top side image
SPI Isolator 2 Click bottom side image

Features overview

Development board

Clicker 2 for Kinetis is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4F microcontroller, the MK64FN1M0VDC12 from NXP Semiconductors, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and

features quickly. Each part of the Clicker 2 for Kinetis development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for Kinetis programming method, using a USB HID mikroBootloader or an external mikroProg connector for Kinetis programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Micro-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or

using a Li-Polymer battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for Kinetis is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Clicker 2 for Kinetis dimensions image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

NXP

Pin count

121

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Enable
PB11
RST
SPI Chip Select
PC4
CS
SPI Clock
PC5
SCK
SPI Data OUT
PC7
MISO
SPI Data IN
PC6
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

SPI Isolator 2 Click Schematic schematic

Step by step

Project assembly

Clicker 2 for PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 2 for Kinetis as your development board.

Clicker 2 for PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for SPI Isolator 2 Click driver.

Key functions:

  • spiisolator2_output_enable - The function enable or disable output ( isolation ) of the ISO7741

  • spiisolator2_set_cmd - The function sends the desired command to the ISO7741

  • spiisolator2_write_byte - The function writes the byte of data to the targeted 8-bit register address of the ISO7741

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief SPIIsolator2 Click example
 *
 * # Description
 * This is an example that demonstrates the use of the SPI Isolator 2 click board.
 * This board uses the ISO7741 which provides high electromagnetic immunity and low
 * emissions at low power consumption while isolating digital I/Os. In this example,
 * we write and then read data from the connected EEPROM 5 click to the SPI Isolator 2
 * click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes SPI, begins to write log, set write/read memory address, enable output.
 *
 * ## Application Task
 * Enables write to EEPROM, then writes the specified text message, and reads it back.
 * All data is being displayed on the USB UART where you can track the program flow.
 *
 * @author Jelena Milosavljevic
 *
 */

#include "board.h"
#include "log.h"
#include "spiisolator2.h"

static spiisolator2_t spiisolator2;
static log_t logger;
static uint8_t demo_data[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
static uint8_t read_data[ 7 ] = { 0 };
static uint32_t memory_address = 1234;

void application_init ( void ) 
{
    log_cfg_t log_cfg;                         /**< Logger config object. */
    spiisolator2_cfg_t spiisolator2_cfg;       /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    spiisolator2_cfg_setup( &spiisolator2_cfg );
    SPIISOLATOR2_MAP_MIKROBUS( spiisolator2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == spiisolator2_init( &spiisolator2, &spiisolator2_cfg ) ) 
    {        
        log_error( &logger, " Application Init Error. \r\n" );
        log_info( &logger, " Please, run program again... \r\n" );
        for ( ; ; );
    }
    Delay_ms( 100 );

    spiisolator2_output_enable( &spiisolator2, SPIISOLATOR2_OUT_ENABLE );
    log_info( &logger, " Application Task " );
    Delay_ms( 100 );
}

void application_task ( void ) 
{
    spiisolator2_set_cmd( &spiisolator2, SPIISOLATOR2_EEPROM5_CMD_WREN );
    Delay_ms( 10 );

    spiisolator2_multi_write( &spiisolator2, 
                              ( ( uint32_t ) SPIISOLATOR2_EEPROM5_CMD_WRITE << 24 ) | memory_address, 4, demo_data, 7 );
    log_printf( &logger," Write data : %s\r\n", demo_data );
    log_printf( &logger, "- - - - - - - - - - -\r\n" );
    Delay_ms( 100 );

    spiisolator2_multi_read( &spiisolator2, 
                             ( ( uint32_t ) SPIISOLATOR2_EEPROM5_CMD_READ << 24 ) | memory_address, 4, read_data, 7 );
    Delay_ms( 1000 );
    
    log_printf( &logger, " Read data  : %s\r\n", read_data );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms( 5000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.