Intermediate
30 min
0

Unlock the potential of precise energy monitoring using PAC1934 and TM4C1299KCZAD

The key to precise energy monitoring and analysis

PAC1934 Click with UNI Clicker

Published Sep 30, 2023

Click board™

PAC1934 Click

Development board

UNI Clicker

Compiler

NECTO Studio

MCU

TM4C1299KCZAD

Efficiently manage your energy resources with confidence using our DC power and energy monitoring solution, offering unparalleled accuracy and insights

A

A

Hardware Overview

How does it work?

PAC1934 Click is based on the PAC1934, a four-channel DC power/energy monitor from Microchip. The click is designed to run on either a 3.3V or 5V power supply. It communicates with the target microcontroller over an I2C interface. Four 4-Terminal current sense shunt resistors are connected to the current sense amplifier (in the chip). Electricity is brought to shunts via screw terminals. The middle screw connector is GND which can be used for bus voltage monitoring. This Click enables energy monitoring with

integration periods from 1ms up to 36 hours or longer. Bus voltage, sense resistor voltage, and accumulated proportional power are stored in registers for retrieval by the system master or Embedded Controller. The PAC1934 is a four-channel bi-directional high-side current-sensing device with precision voltage measurement capabilities, DSP for power calculation, and a power accumulator. It measures the voltage developed across an external sense resistor (VSENSE) to represent the high-side current of a

battery or voltage regulator. The PAC1932/3/4 also measures the SENSE1+ pin voltages (VBUS). This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

PAC1934  Click hardware overview image

Features overview

Development board

UNI Clicker is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It supports a wide range of microcontrollers, such as different ARM, PIC32, dsPIC, PIC, and AVR from various vendors like Microchip, ST, NXP, and TI (regardless of their number of pins), four mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a debugger/programmer connector, and two 26-pin headers for interfacing with external electronics. Thanks to innovative manufacturing technology, it allows you to build

gadgets with unique functionalities and features quickly. Each part of the UNI Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the UNI Clicker programming method, using a third-party programmer or CODEGRIP/mikroProg connected to onboard JTAG/SWD header, the UNI Clicker board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Type-C (USB-C) connector, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or using a Li-Po/Li

Ion battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board (plus USB HOST/DEVICE), including the well-established mikroBUS™ socket, a standardized socket for the MCU card (SiBRAIN standard), and several user-configurable buttons and LED indicators. UNI Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI clicker double image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

512

Silicon Vendor

Texas Instruments

Pin count

212

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PB6
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Alert Interrupt
PB4
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB2
SCL
I2C Data
PB3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

PAC1934 Click Schematic schematic

Step by step

Project assembly

UNI Clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI Clicker as your development board.

UNI Clicker front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for STM32F745VG front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
UNI Clicker Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for PAC1934 Click driver.

Key functions:

  • pac1934_write_byte - Write one byte function

  • pac1934_read_byte - Read one byte function

  • pac1934_send_command - Send command function.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief Pac1934 Click example
 * 
 * # Description
 * This application measures the voltage.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initalizes device, enables the device and makes an initial log.
 * 
 * ## Application Task  
 * This is an example that shows the most important
 * functions that PAC1934 click has, it mesures voltage, current, power and energy.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "pac1934.h"

// ------------------------------------------------------------------ VARIABLES

static pac1934_t pac1934;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    pac1934_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pac1934_cfg_setup( &cfg );
    PAC1934_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pac1934_init( &pac1934, &cfg );
}

void application_task ( void )
{
    float read_value;
    
    pac1934_dev_reset( &pac1934 );
    pac1934_write_byte( &pac1934, PAC1934_CHANNEL_DIS, PAC1934_CHANNEL_DIS_ALL_CHA );
    pac1934_write_byte( &pac1934, PAC1934_CTRL_REG, PAC1934_CTRL_SAMPLE_RATE_8 | PAC1934_CTRL_SINGLE_SHOT_MODE );
    Delay_ms( 100 );
    pac1934_send_command( &pac1934, PAC1934_REFRESH_CMD );
    
    read_value = pac1934_measure_voltage( &pac1934, 1 );
    log_printf( &logger, "Voltage : %.2f V\r\n", read_value );

    read_value = pac1934_measure_current( &pac1934, 1 );
    log_printf( &logger, "Amperage :  %.2f mA\r\n", read_value );

    read_value = pac1934_measure_power( &pac1934, 1 );
    log_printf( &logger, "Power : %.2f W\r\n", read_value );
    
    read_value = pac1934_measure_energy( &pac1934, 1, 8 );
    log_printf( &logger, "Energy :  %.2f J \r\n", read_value );
    log_printf( &logger, "--------------------- \r\n" );
    Delay_ms( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources