Intermediate
30 min

Experience the music like never before with LM48100Q-Q1 and PIC32MZ2048EFH100

Get ready to rock!

StereoAmp Click with Flip&Click PIC32MZ

Published Jul 01, 2023

Click board™

StereoAmp Click

Development board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Get ahead of the competition by integrating an advanced audio amplifier into your embedded solution

A

A

Hardware Overview

How does it work?

StereoAmp Click is based on two LM48100Qs, Boomer mono audio power amplifiers with output fault detection and volume control from Texas Instruments. The inputs of the amplifiers can be mixed/multiplexed to the device’s outputs. Each input has its own independent 32-step volume control. Each amplifier has short circuit and thermal protection, advanced click-and-pop suppression, and high PSRR. The StereoAmp Click features a 3.5mm audio jack as input and two pairs of screw terminals as output for connecting passive speakers. Each amplifier is used for one channel, left or right. The amplifiers are designed to drive a load differentially, a configuration better known as a bridge-tied load (BTL). BTL is an output configuration where the speakers are

connected (bridged) between two audio amplifier outputs. In a single-ended configuration, one side of the load is connected to the ground. Here both channels are connected, but one has an inverted signal. Compared to a single-ended configuration, BTL has two times more voltage swing across the load (speakers). The doubled voltage swing means four times more power to the speakers. This is ideal for applications and devices with lower supply voltage due to battery size. The output fault detection system can sense load conditions, protect the device during short circuit events, and detect open circuit conditions. The LM48100Q-Q1 output fault diagnostics are controlled through the I2C interface. In addition, the IC has an I2C selectable low-power shutdown mode that turns

off the device, reducing current consumption to 0.01μA. The StereoAmp Click uses the standard write-only 2-Wire I2C interface to communicate with the host MCU, supporting clock rates up to 400KHz. There are two fault detection pins, labeled FLL and FLR, according to a left or right channel. Those pins will go logic LOW if the fault condition occurs. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

StereoAmp Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Left Channel Fault Detection
RB11
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Right Channel Fault Detection
RD9
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RA2
SCL
I2C Data
RA3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

StereoAmp Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for StereoAmp Click driver.

Key functions:

  • stereoamp_set_power_on - This function set the power On of both channels by write to the Mode Control register address of LM48100Q-Q1 chip on StereoAmp Click

  • stereoamp_set_volume - This function set the volume of both channels to the Volume Control register address of LM48100Q-Q1 chip on StereoAmp Click

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief StereoAmp Click example
 * 
 * # Description
 * This is an example which demonstrates the use of StereoAmp Click board -
 * stereo amplifier and is ideal for battery operated devices or as a lab amplifier.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Application Init performs Logger and Click initialization.
 * 
 * ## Application Task  
 * This examples first set volume level 20 of 31 ( gain: 1,5 dB ) for 10 seconds. 
 * After that, we increase the volume to level 10 ( gain: -13,5 dB ) for the next 10 seconds. 
 * Results are being sent to the UART Terminal where you can track their changes.
 *  
 * \author Mihajlo Djordjevic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "stereoamp.h"

// ------------------------------------------------------------------ VARIABLES

static stereoamp_t stereoamp;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    stereoamp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 500 );

    //  Click initialization.

    stereoamp_cfg_setup( &cfg );
    STEREOAMP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    stereoamp_init( &stereoamp, &cfg );
    
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ---  StereoAmp Click --- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    
    stereoamp_default_cfg( &stereoamp );
    Delay_ms ( 1000 );
    
    log_printf( &logger, "         Power  On        \r\n" );
    stereoamp_set_power_on( &stereoamp );
    Delay_ms ( 500 );
    log_printf( &logger, "--------------------------\r\n" );
    
    log_printf( &logger, "     Set Volume: -80dB    \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_NEG_80dB );
    Delay_ms ( 500 );
    log_printf( &logger, "--------------------------\r\n" );
    
    log_printf( &logger, "       Enable Fault       \r\n" );
    stereoamp_enable_fault( &stereoamp );
    Delay_ms ( 500 );
    log_printf( &logger, "--------------------------\r\n" );
    
    log_printf( &logger, "     Enable Diagnostic    \r\n" );
    stereoamp_enable_diagnostic( &stereoamp );
    Delay_ms ( 500 );
    log_printf( &logger, "--------------------------\r\n" );
    
    log_printf( &logger, " -- Initialization done --\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 500 );
    
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " -----  Play  Music ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 500 );
}

void application_task ( void )
{
    log_printf( &logger, "        Gain 1.5 dB        \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_1_5dB );
    Delay_ms ( 10000 );
    log_printf( &logger, "--------------------------\r\n" );
    
    log_printf( &logger, "        Gain -13.5 dB      \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_NEG_13_5dB );
    Delay_ms ( 10000 );
    log_printf( &logger, "--------------------------\r\n" );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources