The ultimate compact solution for seamless Li-Ion and Li-Polymer battery charging and monitoring, designed to keep your devices powered safely and efficiently
A
A
Hardware Overview
How does it work?
Charger Click is based on the MCP73831, a miniature single-cell, fully integrated Li-Ion, Li-Polymer charge management controller from Microchip. The MCP73831 is a highly advanced linear charge management controller that employs a constant-current/constant-voltage charge algorithm with selectable preconditioning and charge termination. The constant voltage is fixed to 4.20V, while the constant current value is set with an external R5 resistor to 250mA with a 3K9 resistor. The MCP73831 limits the charge current based on die temperature during high power or high ambient conditions, where this thermal regulation optimizes the charge cycle time while maintaining device reliability. The MCP73831
charges the battery cell over a battery connector, with a STAT LED indicator for visual presentation of charging status. Please remember that battery connectors are not standardized, and the wrong polarity connection can damage the battery, this Click board™, host MCU, or all mentioned. As a smart battery monitor, this Click board™ features the DS2438 from Analog Devices. It comes with 40 bytes of EEPROM that is available for storing important parameters about the battery, such as chemistry, capacity, and such. It eliminates the need for thermistors by sensing battery temperature on-chip. An onboard ADC converter allows battery voltage monitoring for end-of-charge and end-of-discharge determination, while an
onboard integrated current accumulator facilitates fuel gauging with an elapsed time meter in binary format. The Charger Click communicates with the host MCU over the 1-Wire interface with either OW2 or OW1 pins selected via OW SEL jumper with OW1 set by default. As each DS2438 has its unique ID, several units of these Charger Clicks can work on the same 1-Wire bus. This Click board™ can only be operated with a 5V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,
it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication
methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC32
MCU Memory (KB)
2048
Silicon Vendor
Microchip
Pin count
100
RAM (Bytes)
524288
You complete me!
Accessories
Li-Polymer Battery is the ideal solution for devices that demand a dependable and long-lasting power supply while emphasizing mobility. Its compatibility with mikromedia boards ensures easy integration without additional modifications. With a voltage output of 3.7V, the battery meets the standard requirements of many electronic devices. Additionally, boasting a capacity of 2000mAh, it can store a substantial amount of energy, providing sustained power for extended periods. This feature minimizes the need for frequent recharging or replacement. Overall, the Li-Polymer Battery is a reliable and autonomous power source, ideally suited for devices requiring a stable and enduring energy solution. You can find a more extensive choice of Li-Polymer batteries in our offer.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Charger Click driver.
Key functions:
charger_read_temperature
- This function reads the chip internal temperature measurement in degrees Celsiuscharger_read_batt_vdd
- This function reads the battery input voltagecharger_read_current
- This function reads the battery charging current
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief Charger Click Example.
*
* # Description
* This example demonstrates the use of Charger click board by monitoring
* the battery charging status.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver, performs the click default configuration, calibrates
* the zero current charging offset, and resets the elapsed time counter.
*
* ## Application Task
* Reads the chip internal temperature, battery and system VDD, battery charging
* current, and the elapsed time counter, approximately once per second. All data
* are displayed on the USB UART where you can track their changes.
*
* @author Stefan Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "charger.h"
static charger_t charger;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
charger_cfg_t charger_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
charger_cfg_setup( &charger_cfg );
CHARGER_MAP_MIKROBUS( charger_cfg, MIKROBUS_1 );
if ( ONE_WIRE_ERROR == charger_init( &charger, &charger_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( CHARGER_ERROR == charger_default_cfg ( &charger ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_printf( &logger, "\r\n Zero current calibration process\r\n" );
log_printf( &logger, " Keep the battery disconnected in the next 5 seconds\r\n" );
Delay_ms ( 3000 );
if ( CHARGER_ERROR == charger_calibrate_current ( &charger ) )
{
log_error( &logger, " Calibration." );
for ( ; ; );
}
log_printf( &logger, " Calibration done!\r\n\n" );
if ( CHARGER_OK == charger_write_elapsed_time ( &charger, 0 ) )
{
log_printf( &logger, " Elapsed time reset done!\r\n\n" );
}
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
float temperature = 0;
float batt_vdd = 0;
float system_vdd = 0;
float current = 0;
uint32_t elapsed_time = 0;
if ( CHARGER_OK == charger_read_temperature ( &charger, &temperature ) )
{
log_printf( &logger, " Temperature: %.2f degC\r\n", temperature );
}
if ( CHARGER_OK == charger_read_batt_vdd ( &charger, &batt_vdd ) )
{
log_printf( &logger, " Battery VDD: %.3f V\r\n", batt_vdd );
}
if ( CHARGER_OK == charger_read_system_vdd ( &charger, &system_vdd ) )
{
log_printf( &logger, " System VDD: %.3f V\r\n", system_vdd );
}
if ( CHARGER_OK == charger_read_current ( &charger, ¤t ) )
{
log_printf( &logger, " Charging current: %.3f A\r\n", current );
}
if ( CHARGER_OK == charger_read_elapsed_time ( &charger, &elapsed_time ) )
{
log_printf( &logger, " Elapsed time: %lu s\r\n\n", elapsed_time );
}
Delay_ms ( 1000 );
}
int main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END
Additional Support
Resources
Category:Battery charger