Provide power to your solution using the solar panel and charge the LiPo rechargeable battery efficiently
A
A
Hardware Overview
How does it work?
Solar energy Click is based on the BQ25570, a nano-power high-efficiency boost charger, and buck converter from Texas Instruments, designed to work with very low-power energy harvesting elements. It can both provide power to the connected external load and charge the LiPo rechargeable battery using the solar panel as the photovoltaic element - employing its energy harvesting capabilities. The connected load will be powered on from the connected LiPo battery or the supercapacitor soldered on board. When the battery voltage drops under 2.85V, the interrupt pin (routed to the mikroBUS™ INT pin) will be driven to a LOW logic state. The integrated nano-power management unit provides the proper
charging conditions for the battery. When the battery is charged up to 3.25V due to the hysteresis set with the voltage divider resistors, the INT pin will again go to a HIGH logic state. Also, thanks to the nano-power management unit, the battery will not get overcharged above 4.06V. The click board™ provides 2.6V/100mA for the connected external load on the output terminal. The internal supercapacitor will be used as the energy storage element when the battery is not connected. This is useful for continuous powering up of very low-power applications, as the supercapacitor should be able to provide power continuously since it will get recharged by the solar panel before the load drains it out.
The internal converter will be disabled if the storage element voltage drops under the internally set under-voltage level of 1.95V, preventing the damage of completely draining out the connected storage element. In addition to the INT pin, there are two more pins of the BQ25570 routed to the mikroBUS™, used to enable the BQ25570 internal sections (EN) and to enable the power output for the connected load (OUT). Setting the EN pin to the LOW logic level will allow the BQ25570 internal sections and the power charger features, while the HIGH logic level on the OUT pin will enable the power output for the connected load.
Features overview
Development board
PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive
mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI
GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC
MCU Memory (KB)
128
Silicon Vendor
Microchip
Pin count
48
RAM (Bytes)
8196
You complete me!
Accessories
Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.
Li-Polymer Battery is the ideal solution for devices that demand a dependable and long-lasting power supply while emphasizing mobility. Its compatibility with mikromedia boards ensures easy integration without additional modifications. With a voltage output of 3.7V, the battery meets the standard requirements of many electronic devices. Additionally, boasting a capacity of 2000mAh, it can store a substantial amount of energy, providing sustained power for extended periods. This feature minimizes the need for frequent recharging or replacement. Overall, the Li-Polymer Battery is a reliable and autonomous power source, ideally suited for devices requiring a stable and enduring energy solution. You can find a more extensive choice of Li-Polymer batteries in our offer.
Solar Panel offers an efficient alternative powering solution for your device, harnessing the remarkable photoelectric effect to generate electricity when exposed to sunlight. Comprising monocrystalline silicon solar cells encapsulated with PC film lamination, this panel ensures durability and protection from environmental elements. The magic lies in the photoelectric effect, where sunlight excites electrons in the silicon cells, creating an electric current. The panel's construction optimizes sunlight absorption and conversion, enabling it to generate a minimum output of 4.0V. It can produce electrical power under a maximum load of 100mA, making it ideal for various applications. This solar panel offers a sustainable and eco-friendly approach, providing a renewable energy source that reduces reliance on conventional power grids and promotes environmental consciousness.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Solar energy Click driver.
Key functions:
solarenergy_charge_enable
- Charge enable functionsolarenergy_charge_disable
- Charge disable functionssolarenergy_check_indicator
- Battery good indicator functions
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief SOLAR ENERGY Click example
*
* # Description
* This application charge the batery when is empty.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization driver enables - GPIO and start to write log.
*
* ## Application Task
* This is an example which demonstrates the use of Solar Energy Click board.
* The following example will charge the battery if it is empty, and stop charging
* when the battery is full. When battery full status is detected, the device is
* disabled, but will check battery status every 10 seconds.
* Results are being sent to the Usart Terminal where you can track their changes.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "solarenergy.h"
// ------------------------------------------------------------------ VARIABLES
static solarenergy_t solarenergy;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg;
solarenergy_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info(&logger, "---- Application Init ----");
// Click initialization.
solarenergy_cfg_setup( &cfg );
SOLARENERGY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
solarenergy_init( &solarenergy, &cfg );
log_printf( &logger, " Initialization \r\n" );
log_printf( &logger, "--------------------\r\n" );
log_printf( &logger, " Charge the battery \r\n" );
log_printf( &logger, "--------------------\r\n" );
Delay_ms ( 1000 );
}
void application_task ( void )
{
if ( solarenergy_check_indicator( &solarenergy ) )
{
solarenergy_charge_disable( &solarenergy );
// 10 seconds delay
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
else
{
solarenergy_charge_enable( &solarenergy );
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END
Additional Support
Resources
Category:Battery charger