Intermediate
30 min

Achieve stable connection between high-voltage components and low-voltage equipment using TLP2770 and PIC32MZ2048EFM100

Optocouplers: Where light and data high-five

Opto 2 Click with Curiosity PIC32 MZ EF

Published Sep 21, 2023

Click board™

Opto 2 Click

Dev.Board

Curiosity PIC32 MZ EF

Compiler

NECTO Studio

MCU

PIC32MZ2048EFM100

Safeguard delicate signals from potential harm, such as electrical noise or voltage fluctuations, ensuring they reach their destination intact and unaltered.

A

A

Hardware Overview

How does it work?

Opto 2 Click is based on four TLP2770, 20Mbps low-power optocouplers from Toshiba Semiconductor. These are fast optocouplers, with their output stages shielded against EMI, allowing them to work on higher speeds, providing common-mode transient immunity of ±20 kV/μs. The internal LED elements are driven with 4mA for 5V operation or 2.6mA for 3.3V operation. The input stages are also equipped with (Schottky) diodes, which prevents inverse polarization of the LED elements and thus, a permanent damage that might occur in that case. The working principle of the optocouplers is quite simple: A photo-emitting element - usually a LED, is encapsulated inside the die along with the photo-sensitive element, which can be a photo-sensitive transistor or a photo-diode. LEDs and photo-sensing elements are galvanically isolated, making the input and output electrical networks completely independent of each other. When the LED is biased, it emits light which in return causes the current to flow through

the photo-sensitive element. In these particular optocouplers, the output stage is additionally conditioned by a Schmitt trigger and it drives the output transistors which form a totem pole output stage. Having a totem pole output configuration allows the output stage to both sink and source current. The optocoupler inputs - the anodes (labeled as A) and cathodes (labeled as C) of the internal optocoupler LEDs, are routed to the screw terminals, which allow connection the external electrical circuit, used to trigger an event on the isolated MCU. The electrical potential between the anode and the cathode input of each optocoupler element should stay within the range between 3.3V and 5V. The optocoupler outputs are routed to the mikroBUS™ The mikroBUS™ pins INT, CS, RST, and AN, are routed to the optocoupler outputs 1, 2, 3, and 4, respectively, and are labeled as IN1, IN2, IN3, and IN4. As already mentioned, the output stages are conditioned with the Schmitt trigger circuit, reducing the input noise sensitivity

and false triggering. The Faraday shield protects the output stages against EMI and provides common-mode transient immunity of ±20 kV/μs. Although these mikroBUS™ pins are labeled as IN1 to IN4, they are actually outputs from the optocouplers, and it is highly recommended to use them as the INPUT pins on the host MCU. The Click board™ is equipped with an SMD jumper labeled as LOGIC, which allows selection of the voltage, applied to the optocoupler output stage. This voltage effectively determines the logic voltage level for the MCU pins. It can be selected between 3.3V and 5V, allowing this Click board™ to be interfaced with both 3.3V and 5V MCUs. The provided library offers functions that simplify and speed up the application development. The included example application demonstrates their use. This application can be used as a reference for custom projects.

Opto 2 Click top side image
Opto 2 Click bottom side image

Features overview

Development board

Curiosity PIC32 MZ EF development board is a fully integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series (PIC32MZ2048EFM) that has a 2MB Flash, 512KB RAM, integrated FPU, Crypto accelerator, and excellent connectivity options. It includes an integrated programmer and debugger, requiring no additional hardware. Users can expand

functionality through MIKROE mikroBUS™ Click™ adapter boards, add Ethernet connectivity with the Microchip PHY daughter board, add WiFi connectivity capability using the Microchip expansions boards, and add audio input and output capability with Microchip audio daughter boards. These boards are fully integrated into PIC32’s powerful software framework, MPLAB Harmony,

which provides a flexible and modular interface to application development a rich set of inter-operable software stacks (TCP-IP, USB), and easy-to-use features. The Curiosity PIC32 MZ EF development board offers expansion capabilities making it an excellent choice for a rapid prototyping board in Connectivity, IOT, and general-purpose applications.

Curiosity PIC32MZ EF double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Optocoupler 4 Output
RPB4
AN
Optocoupler 3 Output
RA9
RST
Optocoupler 2 Output
RPD4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Optocoupler 1 Output
RF13
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Opto 2 Click Schematic schematic

Step by step

Project assembly

Curiosity PIC32MZ EF front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity PIC32 MZ EF as your development board.

Curiosity PIC32MZ EF front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Curiosity PIC32 MZ EF MB 1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Curiosity PIC32 MZ EF MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for Opto 2 Click driver.

Key functions:

  • opto2_check_out1 - OUT1 Check function

  • opto2_check_out2 - OUT2 Check function

  • opto2_check_out3 - OUT3 Check function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief Opto 2 Click example
 * 
 * # Description
 * This application used to provide an optical isolation of sensitive microcontroller.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes device selects the outputs (OUT1 - OUT4) which state be checked.
 * 
 * ## Application Task  
 * Performs the check procedure for selected outputs and logs the states from that
  outputs on USB UART. Repeat the check procedure every 2 seconds.

 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "opto2.h"

// ------------------------------------------------------------------ VARIABLES

static opto2_t opto2;
static log_t logger;

static uint8_t sel_output;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void opto2_set_logger ( uint8_t sel_out1, uint8_t sel_out2, uint8_t sel_out3, uint8_t sel_out4 )
{
    
    if ( sel_out1 > 1 )
    { 
        sel_out1 = 1;
    }
    if ( sel_out2 > 1 )
    {
        sel_out2 = 1;
    }
    if ( sel_out3 > 1 )
    {
        sel_out3 = 1;
    }
    if ( sel_out4 > 1 )
    {
        sel_out4 = 1;
    }

    sel_output = 0;
    sel_output |= sel_out1;
    sel_output |= sel_out2 << 1;
    sel_output |= sel_out3 << 2;
    sel_output |= sel_out4 << 3;
}

void application_init ( void )
{
    log_cfg_t log_cfg;
    opto2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );

    opto2_cfg_setup( &cfg );
    OPTO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto2_init( &opto2, &cfg );

    log_info( &logger, "---- Application Init ----" );

    opto2_set_logger( 1, 1, 0, 0 );
    log_printf( &logger, "OPTO 2 is initialized \r\n" );
    log_printf( &logger, "" );
    Delay_ms( 200 );
}

void application_task ( void )
{
    uint8_t check_output;
    uint8_t cnt;
    uint8_t tmp;

    tmp = 1;

    for ( cnt = 0; cnt < 4; cnt++ )
    {
        switch ( sel_output & tmp )
        {
            case 0x01 :
            {
                check_output = opto2_check_out1( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT1 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT1 is high\r\n" );
                }
                break;
            }
            case 0x02 :
            {
                check_output = opto2_check_out2( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT2 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT2 is high\r\n" );
                }
                break;
            }
            case 0x04 :
            {
                check_output = opto2_check_out3( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT3 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT3 is high\r\n" );
                }
                break;
            }
            case 0x08 :
            {
                check_output = opto2_check_out4( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT4 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT4 is high\r\n" );
                }
                break;
            }
            default :
            {
                break;
            }
        }

        tmp <<= 1;
    }

    Delay_ms( 2000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources