Intermediate
30 min

Measure atmospheric pressure fluctuations with BMP581 and PIC18F2455

Be aware of the pressure that surrounds you

Pressure 21 Click with EasyPIC v8

Published Nov 01, 2023

Click board™

Pressure 21 Click

Dev. board

EasyPIC v8

Compiler

NECTO Studio

MCU

PIC18F2455

Ideal for weather forecasting and predictions

A

A

Hardware Overview

How does it work?

Pressure 21 Click is based on the BMP581, a high accuracy, low power, barometric pressure, and temperature sensor solution from Bosch Sensortec. Due to on-chip linearization and temperature compensation, the BMP581 provides proper absolute pressure and temperature measurements from 30kPa to 125kPa over a wide operating temperature range. It also provides a relative accuracy of ±6Pa and typical absolute accuracy of ±30Pa with ultra-low noise, low power consumption, and temperature stability alongside programmable output: temperature-only or both pressure and temperature (pressure-only is not supported). The BMP581 operates in three power modes: Sleep, Normal, and Forced Mode. The Normal Mode comprises automated perpetual cycling

between an active measurement period and an inactive Standby period. In Sleep Mode, no measurements are being performed, while in Forced Mode, a single measurement performs. When a measurement is finished, the BMP581 returns to Sleep Mode. Also, oversampling settings are available, ranging from ultra-low power to the highest resolution set to adapt the Click board™ to the target application. Pressure 21 Click allows using I2C and SPI interfaces with a maximum frequency of 1MHz for I2C and 10MHz for SPI communication. The selection can be made by positioning SMD jumpers labeled as COMM SEL in an appropriate position. Note that all the jumpers must be on the same side, or the Click board™ may become unresponsive.

While the I2C interface is selected, the BMP581 allows choosing the least significant bit (LSB) of its I2C slave address using the SMD jumper labeled ADDR SEL. This Click board™ also possesses an additional interrupt pin, routed to the INT pin on the mikroBUS™ socket, indicating when a specific interrupt event occurs, such as FIFO overflow, the threshold over/underrun, data-ready, and more. This Click board™ can only be operated from a 3.3V logic voltage level. Therefore, the board must perform appropriate logic voltage conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Pressure 21 Click top side image
Pressure 21 Click lateral side image
Pressure 21 Click bottom side image

Features overview

Development board

EasyPIC v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports many high pin count 8-bit PIC microcontrollers from Microchip, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, EasyPIC v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the EasyPIC v8 development board contains the components necessary for the most efficient operation of the same board. In addition to the advanced integrated CODEGRIP programmer/debugger module, which offers many valuable programming/debugging options and seamless integration with the Mikroe software environment, the board also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB DEVICE, and CAN are also included, including the well-established mikroBUS™ standard, two display options (graphical and character-based LCD), and several different DIP sockets. These sockets cover a wide range of 8-bit PIC MCUs, from the smallest PIC MCU devices with only eight up to forty pins. EasyPIC v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyPIC v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

24

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
RA5
CS
SPI Clock
RC3
SCK
SPI Data OUT
RC4
MISO
SPI Data IN
RC5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
RB1
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RC3
SCL
I2C Data
RC4
SDA
NC
NC
5V
Ground
GND
GND
2

Take a closer look

Click board™ Schematic

Pressure 21 Click Schematic schematic

Step by step

Project assembly

EasyPIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyPIC v8 as your development board.

EasyPIC v8 front image hardware assembly
Rotary B 2 Click front image hardware assembly
MCU DIP 28 hardware assembly
EasyPIC v8 28pin-DIP - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Pressure 21 Click driver.

Key functions:

  • pressure21_get_int_pin This function returns the INT pin logic state.

  • pressure21_get_sensor_data This function reads the sensor measurements data: pressure in Pascals and temperature in Celsius.

  • pressure21_write_register This function writes desired data to the selected register.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Pressure 21 Click example
 *
 * # Description
 * This example demonstrates the use of Pressure 21 click board by reading and displaying
 * the pressure and temperature measurements.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Waits for the data ready interrupt and then reads the pressure and temperature data
 * and displays them on the USB UART approximately once per second.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "pressure21.h"

static pressure21_t pressure21;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    pressure21_cfg_t pressure21_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    pressure21_cfg_setup( &pressure21_cfg );
    PRESSURE21_MAP_MIKROBUS( pressure21_cfg, MIKROBUS_1 );
    err_t init_flag = pressure21_init( &pressure21, &pressure21_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( PRESSURE21_ERROR == pressure21_default_cfg ( &pressure21 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    if ( pressure21_get_int_pin ( &pressure21 ) )
    {
        float pressure, temperature;
        if ( PRESSURE21_OK == pressure21_get_sensor_data ( &pressure21, &pressure, &temperature ) )
        {
            log_printf ( &logger, " Pressure: %.2f mBar\r\n", pressure * PRESSURE21_PA_TO_MBAR );
            log_printf ( &logger, " Temperature: %.2f C\r\n\n", temperature );
        }
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.