Intermediate
30 min

Ensure reliable and interference-free data exchange with ICL3221 and PIC18F57Q43

Your data's guardian: The ultimate secure UART to RS232 bridge

RS232 Isolator 2 Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

RS232 Isolator 2 Click

Dev. board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Our isolation innovation simplifies secure data transfer, offering an easy-to-use bridge for UART to RS232 connections while providing a secure and reliable communication channel

A

A

Hardware Overview

How does it work?

RS232 Isolator 2 Click is based on the ICL3221, a 3.3V powered RS232 transmitter/receiver that provides ±15kV ESD protection on its RS232 pins from Renesas. It features an automatic power-down function that occurs when the RS232 cable is removed and conserves system power automatically and power-up again when a valid RS232 voltage is applied to any receiver input. It also ensures data rates greater than 250kbps, even at worst-case load conditions. This Click board™ represents an isolated RS232 interface configuration using PS9121, an optically coupled high-speed active low-type isolator from Renesas, containing a GaAlAs LED on the input side, a photodiode, and a signal processing circuit on the output side rated for 3.75kV isolation and up to

15Mbps data rate. The RS232 transceiver ICL3221 is specified with a data rate of 250kbps and operates from a 3.0V to 3.6V external power supply header on the board's right side. In addition to the optocouplers, the TC7SZ125FU logic buffers from Toshiba Semiconductor are used to drive the necessary LED currents that usually cannot be provided by low-power MCUs or RS232 receiver outputs. The ICL3221 communicates with MCU using the UART interface with the default baud rate of 115200bps for data transfer. It also comes equipped with the standard DB-9 connector, which makes interfacing with the RS232 simple and easy, and a red diode indicator labeled INVALID indicates whether a valid RS232 signal is present. This diode always indicates whether a

valid RS232 signal is present at any of the receiver inputs, giving the user a way to determine when the interface block should power down. If the interface cable is disconnected from the DB-9 connector and all the receiver inputs are floating, the ICL3221 detects invalid levels by turning the LED. Reconnecting the cable restores valid levels at the receiver inputs, the diode turns off, and the power management logic wakes up the interface block. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

RS232 Isolator 2 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

DB9 Cable Female-to-Female (2m) cable is essential for establishing dependable serial data connections between devices. With its DB9 female connectors on both ends, this cable enables a seamless link between various equipment, such as computers, routers, switches, and other serial devices. Measuring 2 meters in length, it offers flexibility in arranging your setup without compromising data transmission quality. Crafted with precision, this cable ensures consistent and reliable data exchange, making it suitable for industrial applications, office environments, and home setups. Whether configuring networking equipment, accessing console ports, or utilizing serial peripherals, this cable's durable construction and robust connectors guarantee a stable connection. Simplify your data communication needs with the 2m DB9 female-to-female cable, an efficient solution designed to meet your serial connectivity requirements easily and efficiently.

RS232 Isolator 2 Click accessories image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
UART TX
PC3
TX
UART RX
PC2
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

RS232 Isolator 2 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for RS232 Isolator 2 Click driver.

Key functions:

  • rs232isolator2_generic_write - RS232 Isolator 2 data writing function.

  • rs232isolator2_generic_read - RS232 Isolator 2 data reading function.

  • rs232isolator2_send_data - RS232 Isolator 2 data writing function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief RS232 Isolator 2 Click Example.
 *
 * # Description
 * This library contains API for RS 232 Isolator 2 Click driver.
 * This example transmits/receives and processes data from RS 232 Isolator 2 clicks.
 * The library initializes and defines the UART bus drivers 
 * to transmit or receive data. 
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes driver and wake-up module.
 *
 * ## Application Task
 * Transmitter/Receiver task depend on uncommented code.
 * Receiver logging each received byte to the UART for data logging,
 * while transmitted send messages every 2 seconds.
 *
 * ## Additional Function
 * - static void rs232isolator2_clear_app_buf ( void ) - Function clears memory of app_buf.
 * - static err_t rs232isolator2_process ( void ) - The general process of collecting presponce
 *   that a module sends.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "rs232isolator2.h"

#define PROCESS_BUFFER_SIZE 200

#define TRANSMITTER
// #define RECIEVER

static rs232isolator2_t rs232isolator2;
static log_t logger;

static char app_buf[ PROCESS_BUFFER_SIZE ] = { 0 };
static int32_t app_buf_len = 0;
static int32_t app_buf_cnt = 0;
unsigned char demo_message[ 9 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13, 10, 0 };

/**
 * @brief RS 232 Isolator 2 clearing application buffer.
 * @details This function clears memory of application buffer and reset it's length and counter.
 * @note None.
 */
static void rs232isolator2_clear_app_buf ( void );

/**
 * @brief RS 232 Isolator 2 data reading function.
 * @details This function reads data from device and concats data to application buffer.
 *
 * @return @li @c  0 - Read some data.
 *         @li @c -1 - Nothing is read.
 *         @li @c -2 - Application buffer overflow.
 *
 * See #err_t definition for detailed explanation.
 * @note None.
 */
static err_t rs232isolator2_process ( void );

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    rs232isolator2_cfg_t rs232isolator2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    rs232isolator2_cfg_setup( &rs232isolator2_cfg );
    RS232ISOLATOR2_MAP_MIKROBUS( rs232isolator2_cfg, MIKROBUS_1 );
    err_t init_flag  = rs232isolator2_init( &rs232isolator2, &rs232isolator2_cfg );
    if ( init_flag == UART_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    app_buf_len = 0;
    app_buf_cnt = 0;
    log_info( &logger, " Application Task " );
    
    #ifdef TRANSMITTER
    
        log_printf( &logger, "    Send data:    \r\n" );
        log_printf( &logger, "      mikroE      \r\n" );
        log_printf( &logger, "------------------\r\n" );
        log_printf( &logger, "  Transmit data   \r\n" );
        Delay_ms ( 1000 );

    #endif
        
    #ifdef RECIEVER

        log_printf( &logger, "   Receive data  \r\n" );
        Delay_ms ( 1000 ); 
        Delay_ms ( 1000 );
    
    #endif
        
    log_printf( &logger, "------------------\r\n" );
}

void application_task ( void ) {
    
    #ifdef TRANSMITTER
    
    rs232isolator2_send_data( &rs232isolator2, demo_message );
    log_printf( &logger, "%s", demo_message );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "------------------\r\n" );    
    
    #endif
    
    #ifdef RECIEVER
    
    rs232isolator2_process( );

    if ( app_buf_len > 0 ) {
        log_printf( &logger, "%s", app_buf );
        rs232isolator2_clear_app_buf(  );
    }
    
    #endif
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

static void rs232isolator2_clear_app_buf ( void ) {
    memset( app_buf, 0, app_buf_len );
    app_buf_len = 0;
    app_buf_cnt = 0;
}

static err_t rs232isolator2_process ( void ) {
    int32_t rx_size;
    char rx_buff[ PROCESS_BUFFER_SIZE ] = { 0 };

    rx_size = rs232isolator2_generic_read( &rs232isolator2, rx_buff, PROCESS_BUFFER_SIZE );

    if ( rx_size > 0 ) {
        int32_t buf_cnt = 0;

        if ( app_buf_len + rx_size >= PROCESS_BUFFER_SIZE ) {
            rs232isolator2_clear_app_buf(  );
            return RS232ISOLATOR2_ERROR;
        } else {
            buf_cnt = app_buf_len;
            app_buf_len += rx_size;
        }

        for ( int32_t rx_cnt = 0; rx_cnt < rx_size; rx_cnt++ ) {
            if ( rx_buff[ rx_cnt ] != 0 ) {
                app_buf[ ( buf_cnt + rx_cnt ) ] = rx_buff[ rx_cnt ];
            } else {
                app_buf_len--;
            }

        }
        return RS232ISOLATOR2_OK;
    }
    return RS232ISOLATOR2_ERROR;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.