Unleash your creativity with a cutting-edge waveform generator
A
A
Hardware Overview
How does it work?
Waveform 4 Click is based on the AD9106, a high-performance, quad digital-to-analog converter (DAC) integrating on-chip pattern memory for complex waveform generation with a direct digital synthesizer (DDS) from Analog Devices. The DDS is a 12-bit output, up to 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution. This Click board™, by default, uses an onboard 125 MHz crystal oscillator as a clock source, which is also the maximum output frequency for this board. The high-speed, high-dynamic-range, multichannel complex waveforms generated by AD9106 are suitable for applications such as ultrasound transducer excitation, medical instrumentation, portable instrumentation, signal generators, and arbitrary waveform generators. Pattern data can include directly generated SRAM-stored waveforms, DDS outputs amplitude-modulated by SRAM, or DDS frequency tuning words from SRAM providing chirp or frequency shift keying (FSK) modulation. An internal pattern-control state machine allows the user to program the pattern period for all D/A converters, the start delay within the pattern period for the signal
output on each D/A converter channel, and the repetition rate of the pattern. The generation of a pattern is configurable via TRG routed to the PWM pin of the mikroBUS™ socket. A falling edge on the TRG pin starts generating a pattern, while the rising edge represents a request to terminate pattern generation. The AD9106 has a single frequency output and independently programmable phase shift outputs for each of the four integrated DACs. Besides, gain adjustment factors and offset adjustments are applied to the digital signals on their way into the four DACs. The two DAC outputs of the AD9106 are filtered by an RC network and then amplified via ADA4817-2, an operational amplifier that combines new architecture for FET input operational amplifiers with the eXFCB process from Analog Devices, resulting in an outstanding combination of speed and low noise. The other two outputs, without amplification, were routed on onboard headers labeled as I2 and I4. In addition to the positive supply voltage requirement, the ADA4817-2 amplifier also has a negative supply voltage, achieved by the ADM8829, a charge-pump voltage inverter used to generate a negative supply from a positive input
from Analog Devices. The output signal from the ADA4817-2 follows two paths. One path is routed to an output connector labeled OUT1, while the other is routed to an output connector labeled OUT3. On these connectors, the AD9106 can generate two types of signal patterns under the control of its programmable pattern generator: periodic pulse train waveforms that repeat indefinitely or periodic pulse train waveforms that repeat a finite number of times. This Click board™ communicates with MCU through a standard SPI interface to program the internal registers for complete control of the AD9106. Besides, it possesses additional functionality, such as a reset function implemented and routed at the RST pin of the mikroBUS™ socket, which resets all registers of the AD9106 to their default state. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive
mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI
GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.
Microcontroller Overview
MCU Card / MCU
Architecture
PIC
MCU Memory (KB)
128
Silicon Vendor
Microchip
Pin count
48
RAM (Bytes)
8196
You complete me!
Accessories
Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Schematic
Step by step
Project assembly
Track your results in real time
Application Output via Debug Mode
1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.
2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.
Software Support
Library Description
This library contains API for Waveform 4 Click driver.
Key functions:
waveform4_set_frequency
This function sets the sine and cosine (DDS) waves output frequency.waveform4_set_gain
This function sets the gain level of a desired channel.waveform4_set_wave_output
This function sets a desired output signal wave to the selected channel.
Open Source
Code example
This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.
/*!
* @file main.c
* @brief Waveform4 Click example
*
* # Description
* This example demonstrates the use of Waveform 4 click board.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and performs the click default configuration which
* resets the registers and sets the sine wave output with default gain and
* default frequency for all channels. After that it displays the list of
* supported commands on the USB UART.
*
* ## Application Task
* Depending on the command character received from USB UART it changes the
* signal frequency, gain or wave of the selected channel.
*
* @author Stefan Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "waveform4.h"
static waveform4_t waveform4;
static log_t logger;
#define GAIN_STEP 0.05 // Gain step, used for increase/decrease gain commands.
#define FREQ_STEP 100 // Frequency step, used for increase/decrease frequency commands.
uint32_t freq = WAVEFORM4_DEFAULT_FREQUENCY;
float gain = WAVEFORM4_DEFAULT_GAIN;
uint8_t channel = WAVEFORM4_CHANNEL_1;
uint8_t wave = WAVEFORM4_WAVE_SINE;
/**
* @brief Waveform 4 display commands function.
* @details This function displays the list of supported commands on the USB UART.
* @return None.
* @note None.
*/
void waveform4_display_commands ( void );
/**
* @brief Waveform 4 parse command function.
* @details This function checks if the input command is supported and executes it.
* @param[in] command : Command input, for more details refer to @b waveform4_display_commands function.
* @return @li @c 0 - Success,
* @li @c -1 - Wrong command or command is not executed properly.
*
* See #err_t definition for detailed explanation.
* @note None.
*/
err_t waveform4_parse_command ( uint8_t command );
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
waveform4_cfg_t waveform4_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
waveform4_cfg_setup( &waveform4_cfg );
WAVEFORM4_MAP_MIKROBUS( waveform4_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == waveform4_init( &waveform4, &waveform4_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( WAVEFORM4_ERROR == waveform4_default_cfg ( &waveform4 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
waveform4_display_commands ( );
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
uint8_t command = 0;
if ( log_read ( &logger, &command, 1 ) > 0 )
{
waveform4_parse_command ( command );
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
void waveform4_display_commands ( void )
{
log_printf( &logger, "-------------------------------------------\r\n" );
log_info( &logger, "- UART commands list -\r\n" );
log_printf( &logger, "'+' - Increase frequency.\r\n" );
log_printf( &logger, "'-' - Decrease frequency.\r\n" );
log_printf( &logger, "'G' - Increase gain.\r\n" );
log_printf( &logger, "'g' - Decrease gain.\r\n" );
log_printf( &logger, "'S' or 's' - Select sine wave output.\r\n" );
log_printf( &logger, "'C' or 'c' - Select cosine wave output.\r\n" );
log_printf( &logger, "'T' or 't' - Select triangle wave output.\r\n" );
log_printf( &logger, "'P' or 'p' - Select positive sawtooth wave output.\r\n" );
log_printf( &logger, "'N' or 'n' - Select negative sawtooth wave output.\r\n" );
log_printf( &logger, "'1' - Select channel 1.\r\n" );
log_printf( &logger, "'2' - Select channel 2.\r\n" );
log_printf( &logger, "'3' - Select channel 3.\r\n" );
log_printf( &logger, "'4' - Select channel 4.\r\n" );
log_printf( &logger, "'L' or 'l' - Display commands list.\r\n" );
log_printf( &logger, "-------------------------------------------\r\n" );
}
err_t waveform4_parse_command ( uint8_t command )
{
switch( command )
{
case '+':
{
freq += FREQ_STEP;
if ( freq > WAVEFORM4_MASTER_CLOCK )
{
freq = WAVEFORM4_MASTER_CLOCK;
}
log_printf( &logger, "Frequency increased: %lu Hz\r\n", freq );
return waveform4_set_frequency ( &waveform4, freq );
}
case '-':
{
freq -= FREQ_STEP;
if ( freq > WAVEFORM4_MASTER_CLOCK )
{
freq = 0;
}
log_printf( &logger, "Frequency decreased: %lu Hz\r\n", freq );
return waveform4_set_frequency ( &waveform4, freq );
}
case 'G':
{
gain += GAIN_STEP;
if ( gain > WAVEFORM4_GAIN_MAX )
{
gain = WAVEFORM4_GAIN_MAX;
}
log_printf( &logger, "Gain increased: %.3f\r\n", gain );
return waveform4_set_gain ( &waveform4, channel, gain );
}
case 'g':
{
gain -= GAIN_STEP;
if ( gain < WAVEFORM4_GAIN_MIN )
{
gain = WAVEFORM4_GAIN_MIN;
}
log_printf( &logger, "Gain decreased: %.3f\r\n", gain );
return waveform4_set_gain ( &waveform4, channel, gain );
}
case 'S': case 's':
{
wave = WAVEFORM4_WAVE_SINE;
log_printf( &logger, "Sine wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'C': case 'c':
{
wave = WAVEFORM4_WAVE_COSINE;
log_printf( &logger, "Cosine wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'T': case 't':
{
wave = WAVEFORM4_WAVE_TRIANGLE;
log_printf( &logger, "Triangle wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'P': case 'p':
{
wave = WAVEFORM4_WAVE_POSITIVE_SAWTOOTH;
log_printf( &logger, "Positive sawtooth wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'N': case 'n':
{
wave = WAVEFORM4_WAVE_NEGATIVE_SAWTOOTH;
log_printf( &logger, "Negative sawtooth wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '1':
{
channel = WAVEFORM4_CHANNEL_1;
log_printf( &logger, "Channel 1 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '2':
{
channel = WAVEFORM4_CHANNEL_2;
log_printf( &logger, "Channel 2 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '3':
{
channel = WAVEFORM4_CHANNEL_3;
log_printf( &logger, "Channel 3 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '4':
{
channel = WAVEFORM4_CHANNEL_4;
log_printf( &logger, "Channel 4 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'L': case 'l':
{
waveform4_display_commands ( );
return WAVEFORM4_OK;
}
default :
{
log_error( &logger, "Wrong command." );
return WAVEFORM4_ERROR;
}
}
}
// ------------------------------------------------------------------------ END
/*!
* @file main.c
* @brief Waveform4 Click example
*
* # Description
* This example demonstrates the use of Waveform 4 click board.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and performs the click default configuration which
* resets the registers and sets the sine wave output with default gain and
* default frequency for all channels. After that it displays the list of
* supported commands on the USB UART.
*
* ## Application Task
* Depending on the command character received from USB UART it changes the
* signal frequency, gain or wave of the selected channel.
*
* @author Stefan Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "waveform4.h"
static waveform4_t waveform4;
static log_t logger;
#define GAIN_STEP 0.05 // Gain step, used for increase/decrease gain commands.
#define FREQ_STEP 100 // Frequency step, used for increase/decrease frequency commands.
uint32_t freq = WAVEFORM4_DEFAULT_FREQUENCY;
float gain = WAVEFORM4_DEFAULT_GAIN;
uint8_t channel = WAVEFORM4_CHANNEL_1;
uint8_t wave = WAVEFORM4_WAVE_SINE;
/**
* @brief Waveform 4 display commands function.
* @details This function displays the list of supported commands on the USB UART.
* @return None.
* @note None.
*/
void waveform4_display_commands ( void );
/**
* @brief Waveform 4 parse command function.
* @details This function checks if the input command is supported and executes it.
* @param[in] command : Command input, for more details refer to @b waveform4_display_commands function.
* @return @li @c 0 - Success,
* @li @c -1 - Wrong command or command is not executed properly.
*
* See #err_t definition for detailed explanation.
* @note None.
*/
err_t waveform4_parse_command ( uint8_t command );
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
waveform4_cfg_t waveform4_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
waveform4_cfg_setup( &waveform4_cfg );
WAVEFORM4_MAP_MIKROBUS( waveform4_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == waveform4_init( &waveform4, &waveform4_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( WAVEFORM4_ERROR == waveform4_default_cfg ( &waveform4 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
waveform4_display_commands ( );
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
uint8_t command = 0;
if ( log_read ( &logger, &command, 1 ) > 0 )
{
waveform4_parse_command ( command );
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
void waveform4_display_commands ( void )
{
log_printf( &logger, "-------------------------------------------\r\n" );
log_info( &logger, "- UART commands list -\r\n" );
log_printf( &logger, "'+' - Increase frequency.\r\n" );
log_printf( &logger, "'-' - Decrease frequency.\r\n" );
log_printf( &logger, "'G' - Increase gain.\r\n" );
log_printf( &logger, "'g' - Decrease gain.\r\n" );
log_printf( &logger, "'S' or 's' - Select sine wave output.\r\n" );
log_printf( &logger, "'C' or 'c' - Select cosine wave output.\r\n" );
log_printf( &logger, "'T' or 't' - Select triangle wave output.\r\n" );
log_printf( &logger, "'P' or 'p' - Select positive sawtooth wave output.\r\n" );
log_printf( &logger, "'N' or 'n' - Select negative sawtooth wave output.\r\n" );
log_printf( &logger, "'1' - Select channel 1.\r\n" );
log_printf( &logger, "'2' - Select channel 2.\r\n" );
log_printf( &logger, "'3' - Select channel 3.\r\n" );
log_printf( &logger, "'4' - Select channel 4.\r\n" );
log_printf( &logger, "'L' or 'l' - Display commands list.\r\n" );
log_printf( &logger, "-------------------------------------------\r\n" );
}
err_t waveform4_parse_command ( uint8_t command )
{
switch( command )
{
case '+':
{
freq += FREQ_STEP;
if ( freq > WAVEFORM4_MASTER_CLOCK )
{
freq = WAVEFORM4_MASTER_CLOCK;
}
log_printf( &logger, "Frequency increased: %lu Hz\r\n", freq );
return waveform4_set_frequency ( &waveform4, freq );
}
case '-':
{
freq -= FREQ_STEP;
if ( freq > WAVEFORM4_MASTER_CLOCK )
{
freq = 0;
}
log_printf( &logger, "Frequency decreased: %lu Hz\r\n", freq );
return waveform4_set_frequency ( &waveform4, freq );
}
case 'G':
{
gain += GAIN_STEP;
if ( gain > WAVEFORM4_GAIN_MAX )
{
gain = WAVEFORM4_GAIN_MAX;
}
log_printf( &logger, "Gain increased: %.3f\r\n", gain );
return waveform4_set_gain ( &waveform4, channel, gain );
}
case 'g':
{
gain -= GAIN_STEP;
if ( gain < WAVEFORM4_GAIN_MIN )
{
gain = WAVEFORM4_GAIN_MIN;
}
log_printf( &logger, "Gain decreased: %.3f\r\n", gain );
return waveform4_set_gain ( &waveform4, channel, gain );
}
case 'S': case 's':
{
wave = WAVEFORM4_WAVE_SINE;
log_printf( &logger, "Sine wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'C': case 'c':
{
wave = WAVEFORM4_WAVE_COSINE;
log_printf( &logger, "Cosine wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'T': case 't':
{
wave = WAVEFORM4_WAVE_TRIANGLE;
log_printf( &logger, "Triangle wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'P': case 'p':
{
wave = WAVEFORM4_WAVE_POSITIVE_SAWTOOTH;
log_printf( &logger, "Positive sawtooth wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'N': case 'n':
{
wave = WAVEFORM4_WAVE_NEGATIVE_SAWTOOTH;
log_printf( &logger, "Negative sawtooth wave selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '1':
{
channel = WAVEFORM4_CHANNEL_1;
log_printf( &logger, "Channel 1 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '2':
{
channel = WAVEFORM4_CHANNEL_2;
log_printf( &logger, "Channel 2 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '3':
{
channel = WAVEFORM4_CHANNEL_3;
log_printf( &logger, "Channel 3 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case '4':
{
channel = WAVEFORM4_CHANNEL_4;
log_printf( &logger, "Channel 4 selected.\r\n" );
return waveform4_set_wave_output ( &waveform4, channel, wave );
}
case 'L': case 'l':
{
waveform4_display_commands ( );
return WAVEFORM4_OK;
}
default :
{
log_error( &logger, "Wrong command." );
return WAVEFORM4_ERROR;
}
}
}
// ------------------------------------------------------------------------ END