Intermediate
30 min

Create accurate square-wave pulses with LTC6904 and PIC18F47K42TQFP for limitless possibilities

Timing perfected

Clock Gen 3 Click with Curiosity Nano with PIC18F47K42

Published Feb 13, 2024

Click board™

Clock Gen 3 Click

Dev Board

Curiosity Nano with PIC18F47K42

Compiler

NECTO Studio

MCU

PIC18F47K42TQFP

Unlock seamless synchronization and precise timing in your engineering projects with a powerful clock generator

A

A

Hardware Overview

How does it work?

Clock Gen 3 Click is based on the LTC6904 IC, 1kHz to 68MHz Serial Port Programmable Oscillator from Linear Technology. The LTC6904 is a low-power self-contained digital frequency source providing a precision frequency from 1KHz to 68MHz, set by the I2C interface operating up to 3.4 Mbps. This Click board™ features onboard I2C address jumpers, pull-up resistors, a power supply bypass capacitor, and a power LED. The maximum frequency error is 1.1% or 1.6% when operating with a flexible power supply voltage range from 2.7V to 5V, which makes it suitable for 3.3V and 5V MCUs. In most frequency ranges, the output of the Clock Gen 3 Click is generated as a division of the higher internal clock frequency. This helps to minimize jitter and subharmonics at the output of the device.

In the highest frequency ranges, the division ratio is reduced, which will result in a greater cycle-to-cycle jitter as well as spurs at the internal sampling frequency. Because the internal control loop runs at 1MHz to 2MHz without regard to the output frequency, output spurs separated from the set frequency by 1MHz to 2MHz may be observed. These spurs are characteristically more than 30dB below the level of the set frequency. The LTC6904 communicates with the MCU using the standard I2C 2-wire interface. The two bus lines, SDA and SCL, must be HIGH when the bus is not in use. If the I2C interface is not driven with a standard I2C compatible device, care must be taken to ensure that the SDA line is released during the ACK cycle to prevent bus contention.

The LTC6904 can respond to one of two 7-bit addresses. The first 6 bits (MSBs) have been factory programmed to 001011. The address pin, ADR (Pin 4), is programmed by the user and determines the LSB of the slave address, and it can be selected by an onboard SMD jumper labeled as ADD SEL, allowing selection of the slave address LSB. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Clock Gen 3 Click top side image
Clock Gen 3 Click lateral side image
Clock Gen 3 Click bottom side image

Features overview

Development board

PIC18F47K42 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate the PIC18F47K42 microcontroller (MCU). Central to its design is the inclusion of the powerful PIC18F47K42 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive mechanical user switch

providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI GPIO), offering extensive connectivity options.

Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 2.3V to 5.1V (limited by USB input voltage), with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F47K42 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

8192

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
Output Enable
PD6
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB1
SCL
I2C Data
PB2
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Clock Gen 3 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F47K42 as your development board.

Curiosity Nano Base for Click boards accessories 1 image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47K42 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PIC18F47XXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for Clock Gen 3 Click driver.

Key functions:

  • void clockgen3_set_freq( float freq ) - Sets Frequency
  • void clockgen3_config( uint8_t cfg ) - Configuration

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief ClockGen3 Click example
 * 
 * # Description
 * This example demonstrates the use of Clock Gen 3 click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and configures the click board.
 * 
 * ## Application Task  
 * Sets different frequencies every 3 seconds and displays the set frequency 
 * on the USB UART.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "clockgen3.h"

// ------------------------------------------------------------------ VARIABLES

static clockgen3_t clockgen3;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    clockgen3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    clockgen3_cfg_setup( &cfg );
    CLOCKGEN3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    clockgen3_init( &clockgen3, &cfg );

    clockgen3_config( &clockgen3, CLOCKGEN3_CFG_ON_CLK_180 );
    Delay_ms( 500 );
}

void application_task ( void )
{
    log_printf( &logger, ">> Set Freq = 12.000 MHz \r\n" );
    clockgen3_set_freq( &clockgen3, 12000.0 );
    Delay_ms( 3000 );
    log_printf( &logger, ">> Set Freq = 8.000 MHz \r\n" );
    clockgen3_set_freq( &clockgen3, 8000.0 );
    Delay_ms( 3000 );
    log_printf( &logger, ">> Set Freq = 5.500 MHz \r\n" );
    clockgen3_set_freq( &clockgen3, 5500.0 );
    Delay_ms( 3000 );
    log_printf( &logger, ">> Set Freq = 2.700 MHz \r\n" );
    clockgen3_set_freq( &clockgen3, 2700.0 );
    Delay_ms( 3000 );
    log_printf( &logger, ">> Set Freq = 800 KHz \r\n" );
    clockgen3_set_freq( &clockgen3, 800.0 );
    Delay_ms( 3000 );
    log_printf( &logger, ">> Set Freq = 200 KHz \r\n" );
    clockgen3_set_freq( &clockgen3, 200.0 );
    Delay_ms( 3000 );
    log_printf( &logger, "---------------------------- \r\n" );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources