Intermediate
30 min

Experience intuitive navigation with CY8CMBR3106S-LQXI and ATmega328

Quadruple touch, one slide

Cap Touch 5 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

Cap Touch 5 Click

Dev Board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328

Discover a game-changing interface, seamlessly integrating four touch buttons and a slider. Explore its engineering marvel, transforming user interaction across diverse applications

A

A

Hardware Overview

How does it work?

Cap Touch 5 Click is based on the CY8CMBR3106S-LQXI, a CapSense® Express™ controller from Infineon, which has an advanced analog sensing channel and the Capacitive Sigma Delta PLUS (CSD PLUS) sensing algorithm, which delivers a signal-to-noise ratio (SNR) of greater than 100:1 to ensure touch accuracy even in extremely noisy environments. This controller is enabled with Infineon’s SmartSense™ Auto-tuning algorithm, which compensates for manufacturing variations and dynamically monitors and maintains optimal sensor performance in all environmental conditions. In addition, SmartSense Auto-tuning enables a faster time-to-market by eliminating the

time-consuming manual tuning efforts during development and production ramp-up. Advanced features like LED brightness control, proximity sensing, and system diagnostics save development time. These controllers enable robust liquid-tolerant designs by eliminating false touches due to mist, water droplets, or streaming water. The CapSense controller locks up the user interface in firmware to prevent touch inputs in streaming water. Additionally, it implements the advanced noise immunity algorithm, EMC, for stable operation in extremely noisy conditions. Besides that, it is also perfectly suited for low-power applications, such as those operated by a

battery, when a capacitive sensing controller with ultra-low average power consumption must be selected. The CY8CMBR3106S-LQXI controller draws an average current of 22µA per sensor. The Cap Touch 5 Click supports four CapSense buttons. Its sensitivity can be specified individually for each CapSense button and slider. Higher sensitivity values can be used for thick overlays or small button diameters, while lower sensitivity values should be used for large buttons or thin overlays to minimize power consumption. Therefore, this Click board™ comes without the overlay, so it is up to the user to choose the desired application and implementation.

Cap Touch 5 Click top side image
Cap Touch 5 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

32

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Cap Touch 5 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Barometer 13 Click front image hardware assembly
Prog-cut hardware assembly
Arduino UNO Rev3 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Cap Touch 5 Click driver.

Key functions:

  • captouch5_read_button_status - This function reads button status

  • captouch5_read_slider_position - This function reads slider position

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief CapTouch5 Click example
 * 
 * # Description
 * This demo app demonstrates basic functionality of CapTouch 5 Click
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes I2C module and driver, tests communication and configures device
 * 
 * ## Application Task  
 * Waiting for touch sensor to detect something and then logs what is touched
 * 
 * *note:* 
 * Click will go to sleep if doesn't get any command in 340ms
 * When you start device try restarting your board few times to start device
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "captouch5.h"

// ------------------------------------------------------------------ VARIABLES

static captouch5_t captouch5;
static log_t logger;

static T_CAPTOUCH5_BUTTONS buttons;
static T_CAPTOUCH5_DEVICE_CONFIG device_cfg;
static uint8_t state_check;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void captouch5_read_buttons(  )
{
    uint8_t press = 0;

    if ( buttons.button1 == CAPTOUCH5_BUTTON_PRESSED )
    {
        log_info( &logger, "Button 1 : pressed" );
        press = 1;
    }

    if ( buttons.button2 == CAPTOUCH5_BUTTON_PRESSED )
    {
        log_info( &logger, "Button 2 : pressed" );
        press = 1;
    }

    if ( buttons.button3 == CAPTOUCH5_BUTTON_PRESSED )
    {
        log_info( &logger, "Button 3 : pressed" );
        press = 1;
    }

    if (buttons.button4 == CAPTOUCH5_BUTTON_PRESSED)
    {
        log_info( &logger, "Button 4 : pressed" );
        press = 1;
    }

    if (press)
    {
        log_printf( &logger, "\r\n" );
        state_check = 1;
        press = 0;
    }
}


// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    captouch5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    captouch5_cfg_setup( &cfg );
    CAPTOUCH5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    captouch5_init( &captouch5, &cfg );
    captouch5_default_cfg ( &captouch5, &device_cfg );
    
//     uint8_t fam_id = captouch5_get_family_id( &captouch5 );
//     if ( CAPTOUCH5_FAMILY_ID != fam_id )
//     {
//         log_info( &logger, "---- ID ERROR ----" );
//         for ( ; ; );
//     }
}

void application_task ( void )
{
    uint16_t temp_byte;
    uint16_t last_temp;
    uint8_t error_data;
    uint8_t temp_slider;

    state_check = 0;

    error_data = captouch5_process( &captouch5 );

    if ( error_data == CAPTOUCH5_ERROR )
    {
        log_printf( &logger, "***** ERROR *****" );
        state_check = 1;
        return;
    }

    temp_byte = captouch5_read_slider_position( &captouch5 );
    captouch5_read_button_status( &captouch5, &buttons );

    if ( temp_byte != last_temp )
    {
        log_printf( &logger, "Slider position value: %u \r\n", temp_byte );
        last_temp = temp_byte;
        state_check = 1;
    }

    captouch5_read_buttons(  );

    Delay_ms ( 100 );

    if ( state_check == 1 )
    {
        log_info( &logger, "--- Waiting for command ---\r\n" );
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.