Intermediate
30 min

Ensure uniform brightness and unmatched control in your lighting projects using MP3309C and TM4C129XNCZAD

Lighting excellence starts here

LED Driver 15 Click with EasyMx PRO v7 for Tiva

Published Sep 09, 2023

Click board™

LED Driver 15 Click

Dev. board

EasyMx PRO v7 for Tiva

Compiler

NECTO Studio

MCU

TM4C129XNCZAD

Our LED driver solution harmoniously powers up to 8 white LEDs in series, offering a brilliant and energy-efficient lighting experience for various applications

A

A

Hardware Overview

How does it work?

LED Driver 15 Click is based on the MP3309C, a white LED step-up converter from Monolithic Power Systems that uses peak current mode to regulate the current through the LED string using an external low-side resistor. The MP3309C offers high efficiency and features a programmable switching frequency to optimize efficiency. It delivers up to 40mA of LED current supporting up to 8 white LEDs in series connected to the LED terminal. The MP3309C also has integrated protection circuitry to guard against thermal overstress and electrical damage, featuring LED

open protection, cycle-by-cycle current limit protection, under-voltage protection (UVP), and thermal shutdown protection. The MP3309C provides two dimming methods, PWM and analog dimming mode. It uses a PWM signal from the mikroBUS™ socket for PWM dimming. When the PWM signal is in a low logic state, the MP3309C stops switching and resumes Normal operation when the PWM signal is in a high logic state. Using a 100Hz to 2kHz PWM dimming frequency for most dimming ratio requests is recommended. The MP3309C set the LED current amplitude for

analog dimming through the I2C interface. LED Driver 15 Click communicates with MCU using the standard I2C 2-Wire interface that supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) operation. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

LED Driver 15 Click top side image
LED Driver 15 Click bottom side image

Features overview

Development board

EasyMx PRO v7 for TIVA is the seventh generation of ARM development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 32-bit ARM microcontrollers from Texas Instruments and a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB-B. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. With two different connectors for each port, EasyMx PRO v7 for TIVA allows you to connect accessory boards, sensors, and custom electronics more efficiently than ever. Each part of the EasyMx

PRO v7 for TIVA development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-23V AC or 9-32V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B) connector. Communication options such as USB-UART, USB-HOST/DEVICE, CAN, and

Ethernet are also included, including the well-established mikroBUS™ standard, one display option for the TFT board line of products, and a standard TQFP socket for the seventh-generation MCU cards. This socket covers a wide range of 32-bit TIVA-series ARM Cortex-M4 MCUs. EasyMx PRO v7 for TIVA is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyMx PRO v7 for Tiva horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

7th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

212

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Signal
PD0
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB2
SCL
I2C Data
PB3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

LED Driver 15 Click Schematic schematic

Step by step

Project assembly

EasyPIC Fusion v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyMx PRO v7 for Tiva as your development board.

EasyPIC Fusion v7 front image hardware assembly
GNSS2 Click front image hardware assembly
EasyPIC FUSION v7 ETH MCUcard with PIC32MZ2048EFH144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EMxPRO-STM32-TIVA/EPIC Fusion v7 Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
EasyPIC PRO v7a MCU Selection Necto Step hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for LED Driver 15 Click driver.

Key functions:

  • leddriver15_set_i2c_dimming - This function sets the LEDs dimming level in I2C mode

  • leddriver15_enable_device - This function enables the device by setting the EN pin to high logic state

  • leddriver15_disable_device - This function disables the device by setting the EN pin to low logic state.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief LED Driver 15 Click example
 *
 * # Description
 * This example demonstrates the use of LED Driver 15 click board by changing
 * the LEDs dimming level.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Changes the LEDs dimming level in I2C mode every 500ms. The dimming level will be
 * displayed on the USB UART.
 *
 * @note
 * It is recommended to connect 8 LEDs in series (40mA) to the output connector.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "leddriver15.h"

static leddriver15_t leddriver15;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    leddriver15_cfg_t leddriver15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    leddriver15_cfg_setup( &leddriver15_cfg );
    LEDDRIVER15_MAP_MIKROBUS( leddriver15_cfg, MIKROBUS_1 );
    if ( LEDDRIVER15_OK != leddriver15_init( &leddriver15, &leddriver15_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( LEDDRIVER15_OK != leddriver15_default_cfg ( &leddriver15 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    static uint8_t dimming = LEDDRIVER15_I2C_DIMMING_MIN;
    if ( LEDDRIVER15_OK == leddriver15_set_i2c_dimming ( &leddriver15, dimming ) )
    {
        log_printf( &logger, " Dimming level: %u\r\n\n", ( uint16_t ) dimming );
    }
    if ( ++dimming > LEDDRIVER15_I2C_DIMMING_MAX )
    {
        dimming = LEDDRIVER15_I2C_DIMMING_MIN;
    }
    Delay_ms( 500 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.