Intermediate
30 min

Experience a new level of environmental insight with BME680 and TM4C129ENCPDT

MultiSense EnviroGuard

Environment Click with Fusion for Tiva v8

Published Aug 24, 2023

Click board™

Environment Click

Dev. board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

Harness the power of our all-in-one solution to gain a holistic view of your surroundings, measuring temperature, humidity, pressure, and VOC gases to make informed decisions for a healthier environment

A

A

Hardware Overview

How does it work?

Environment Click is based on the BME680, a digital environmental sensor that combines gas, humidity, temperature, and barometric pressure sensing from Bosch Sensortec. The gas sensor within the BME680 can detect a broad range of gases to measure indoor air quality for personal well-being. Gases that the BME680 detects include Volatile Organic Compounds (VOC) from paints (such as formaldehyde), lacquers, paint strippers, cleaning supplies, office equipment, glues, adhesives, and alcohol. It offers reduced power consumption, improved accuracy specifications, and a configurable host interface for the fastest data transfer. It covers extended operating pressure, humidity, and temperature ranges from 300-1100hPa, 0-100%RH and from

-40°C to +85°C with the accuracy of ±3%RH and ±0.5°C. The integrated temperature sensor has been optimized for the lowest noise and highest resolution. Its output is used for temperature compensation of the pressure and humidity sensors and can also be used to estimate the ambient temperature. In addition, the BME680 also has an integrated humidity and absolute barometric pressure sensor with extremely high accuracy and resolution over a wide temperature range, providing a swift response time for fast context awareness applications.
Environment Click allows using both I2C and SPI interfaces with a maximum frequency of 3.4MHz for I2C and 10MHz for SPI communication. The selection can be made by positioning SMD

jumpers labeled as COMM SEL in an appropriate position. Note that all the jumpers' positions must be on the same side, or the Click board™ may become unresponsive. While the I2C interface is selected, the BME680 allows choosing the least significant bit (LSB) of its I2C slave address using the SMD jumper labeled ADDR SEL. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

Environment Click top side image
Environment Click bottom side image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PH0
CS
SPI Clock
PQ0
SCK
SPI Data OUT
PQ3
MISO
SPI Data IN
PQ2
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD2
SCL
I2C Data
PD3
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Environment Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
Buck 22 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
v8 SiBRAIN MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Environment Click driver.

Key functions:

  • environment_get_gas_resistance - This function gets gas resistance value from BME680 chip

  • environment_get_pressure - This function gets pressure value of BME680 chip

  • environment_get_humidity - This function get humidity value of BME680 chip

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Environment Click example
 * 
 * # Description
 * Example demonstrates use of the Environment Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization driver enables - Device software reset, check device ID, set default configuration of BME680 chip, also display logs.
 * 
 * ## Application Task  
 * This is an example which demonstrates the use of Environment Click board.
 * Measures temperature, humidity, pressure and gas resistance data from the BME680 chip sensor.
 * Displays ambient temperature data [ degrees Celsius ],
 * humidity data [ % ], pressure data [ mbar ] and gas resistance.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * All data logs write on usb uart changes for every 2 sec.
 * 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "environment.h"

// ------------------------------------------------------------------ VARIABLES

static environment_t environment;
static log_t logger;
static float temperature;
static float pressure;
static float humidity;
static int32_t gas;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    environment_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    environment_cfg_setup( &cfg );
    ENVIRONMENT_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    environment_init( &environment , &cfg );
    environment_default_cfg( &environment );
}

void application_task ( void )
{
    //  Task implementation.

    temperature = environment_get_temperature( &environment);
    log_printf( &logger, " Temperature : %.2fC", temperature);

    humidity = environment_get_humidity( &environment );
    log_printf( &logger, "      Humidity : %f%%", humidity);

    pressure = environment_get_pressure( &environment );
    log_printf( &logger, "      Pressure : %.3fmbar", pressure);

    gas = environment_get_gas_resistance( &environment );
    log_printf( &logger, "      Gas Resistance : %ld\r\n", gas);

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.