Intermediate
30 min

Create some serious wireless wonders with CYBT-343026-01 and STM32F302VC

Simplify your life with Bluetooth

BT-EZ Click with CLICKER 4 for STM32F302VCT6

Published Jul 22, 2025

Click board™

BT-EZ Click

Dev. board

CLICKER 4 for STM32F302VCT6

Compiler

NECTO Studio

MCU

STM32F302VC

Stream, share, and control data between compatible devices with unmatched ease

A

A

Hardware Overview

How does it work?

BT-EZ Click is based on the CYBT-343026-01, a module from Infineon that has some impressive features, including the fact that it includes a royalty-free Bluetooth stack with Bluetooth 5.0 and BLE supported. Besides that, low power mode enables the module to consume as low as 2.69µA in deep sleep mode, which is ideal for portable, wearable, and various other battery-powered devices and applications. The BT-EZ Click is a fully integrated Bluetooth smart-ready wireless module with an onboard crystal oscillator, passive components, flash memory, and the CYW20706 silicon device from Infineon. The CYBT-343026-01 module also includes a Cortex-M3 32-bit processor and 512 KB of onboard serial flash memory. It is designed for standalone operation, while the integrated power amplifier is used to achieve Class I or II output power capability. The BT-EZ click board uses UART communication and GPIO pins

for communication with the main MCU. The BT-EZ Click supports two UART communication modes. HCI UART intercafe is a standard, 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 38400 bps to 4 Mbps. During initial boot, UART speeds may be limited to 750 kbps. The baud rate may be selected via a vendor-specific UART HCI command. The UART clock default setting is 24MHz and can run as high as 48 MHz to support up to 4 Mbps. The baud rate of the CYBT-343026-01UART module is controlled by two values: the clock divisor (set in the DLBR register) that divides the UART clock by an integer multiple of 16, and the baud rate adjustment (set in the DHBR register) that is used to specify the number of UART clock cycles to stuff in the first or second half of each bit time. The BT-EZ click has a second UART (PUART) mode that may be used to interface with other peripherals. This peripheral UART is

accessed through the optional I/O ports, which can be configured individually and separately for each signal. The external I2C pad provides a 2-pin master I2C interface, which can retrieve configuration information from an external EEPROM or communicate with peripherals such as track-ball or touch-pad modules and motion-tracking ICs used in mouse devices. This interface is compatible with I2C slave devices. I2C does not support multi-master capability or flexible wait-state insertion by either master or slave devices. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

BT-EZ Click top side image
BT-EZ Click bottom side image

Features overview

Development board

Clicker 4 for STM32F3 is a compact development board designed as a complete solution, you can use it to quickly build your own gadgets with unique functionalities. Featuring a STM32F302VCT6, four mikroBUS™ sockets for Click boards™ connectivity, power managment, and more, it represents a perfect solution for the rapid development of many different types of applications. At its core, there is a STM32F302VCT6 MCU, a powerful microcontroller by STMicroelectronics, based on the high-

performance Arm® Cortex®-M4 32-bit processor core operating at up to 168 MHz frequency. It provides sufficient processing power for the most demanding tasks, allowing Clicker 4 to adapt to any specific application requirements. Besides two 1x20 pin headers, four improved mikroBUS™ sockets represent the most distinctive connectivity feature, allowing access to a huge base of Click boards™, growing on a daily basis. Each section of Clicker 4 is clearly marked, offering an intuitive and clean interface. This makes working with the development

board much simpler and thus, faster. The usability of Clicker 4 doesn’t end with its ability to accelerate the prototyping and application development stages: it is designed as a complete solution which can be implemented directly into any project, with no additional hardware modifications required. Four mounting holes [4.2mm/0.165”] at all four corners allow simple installation by using mounting screws. For most applications, a nice stylish casing is all that is needed to turn the Clicker 4 development board into a fully functional, custom design.

CLICKER 4 for STM32F302VCT6 double image

Microcontroller Overview

MCU Card / MCU

STM32F302VC Image

Architecture

ARM Cortex-M4

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

100

RAM (Bytes)

40960

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PC15
RST
UART CTS
PA4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
UART RTS
PD0
INT
UART TX
PA2
TX
UART RX
PA3
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

BT-EZ Click Schematic schematic

Step by step

Project assembly

PIC32MZ MXS Data Capture Board front image hardware assembly

Start by selecting your development board and Click board™. Begin with the CLICKER 4 for STM32F302VCT6 as your development board.

PIC32MZ MXS Data Capture Board front image hardware assembly
Thermo 21 Click front image hardware assembly
Board mapper by product6 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC32MZ MXS Data Capture Board NECTO MCU Selection Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto image step 11 hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for BT-EZ Click driver.

Key functions:

  • btez_generic_write - Generic write function

  • btez_generic_read - Generic read function

  • btez_send_command - Send command function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief BtEz Click example
 * 
 * # Description
 * This example reads and processes data from BT-EZ Clicks.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and configures the Click board.
 * 
 * ## Application Task  
 * Checks for the received data, reads it and replies with a certain message.
 * 
 * ## Additional Function
 * - btez_process ( ) - Logs all received messages on UART, and sends the certain
 * message back to the connected device.
 * 
 * @note
 * We have used the Serial Bluetooth Terminal smartphone application for the test. 
 * A smartphone and the Click board must be paired in order to exchange messages
 * with each other.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "btez.h"
#include "string.h"

#define PROCESS_COUNTER 100
#define PROCESS_RX_BUFFER_SIZE 200

#define CMD_PING           "/PING"
#define CMD_DEVICE_NAME    "SDN,N=BT-EZ_Click"
#define CMD_SAVE           "SDA$,A=0080"
#define CMD_GDN            "GDN"
#define SEND_DATA          "MikroE // BT-EZ Click\r\n"

// ------------------------------------------------------------------ VARIABLES

static btez_t btez;
static log_t logger;
static uint8_t config_mode = 0;
static char current_parser_buf[ PROCESS_RX_BUFFER_SIZE ];

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

static void btez_process ( void )
{
    int32_t rsp_size;
    uint16_t rsp_cnt = 0;
    uint8_t ret_flag = 0;
    
    char uart_rx_buffer[ PROCESS_RX_BUFFER_SIZE ] = { 0 };
    uint8_t check_buf_cnt;
    uint8_t process_cnt = PROCESS_COUNTER;
    
    // Clear current buffer
    memset( current_parser_buf, 0, PROCESS_RX_BUFFER_SIZE ); 
    
    while( process_cnt != 0 )
    {
        rsp_size = btez_generic_read( &btez, &uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );

        if ( rsp_size > 0 )
        {  
            // Validation of the received data
            for ( check_buf_cnt = 0; check_buf_cnt < rsp_size; check_buf_cnt++ )
            {
                if ( uart_rx_buffer[ check_buf_cnt ] == 0 ) 
                {
                    uart_rx_buffer[ check_buf_cnt ] = 13;
                }
            }
            // Storages data in current buffer
            rsp_cnt += rsp_size;
            if ( rsp_cnt < PROCESS_RX_BUFFER_SIZE )
            {
                strncat( current_parser_buf, uart_rx_buffer, rsp_size );
            }
            
            if ( strchr ( uart_rx_buffer, '@' ) )
            {
                ret_flag = 1;
                process_cnt = 3;
            }
            else if ( config_mode == 0 )
            {
                btez_send_command( &btez, SEND_DATA );
                ret_flag = 2;
                process_cnt = 3;
            }
            
            // Clear RX buffer
            memset( uart_rx_buffer, 0, PROCESS_RX_BUFFER_SIZE );
        } 
        else 
        {
            process_cnt--;
            
            // Process delay 
            Delay_ms ( 100 );
        }
    }
    
    if ( ret_flag != 0 )
    {
        log_printf( &logger, "%s", current_parser_buf );
    }
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    btez_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    btez_cfg_setup( &cfg );
    BTEZ_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    btez_init( &btez, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, "Configuring the module...\r\n" );
    config_mode = 1;
    
    btez_module_reset( &btez );
    btez_process( );
    btez_send_command( &btez, CMD_PING );
    btez_process( );
    btez_send_command( &btez, CMD_DEVICE_NAME );
    btez_process( );
    btez_send_command( &btez, CMD_SAVE );
    btez_process( );
    btez_send_command( &btez, CMD_GDN );
    btez_process( );
    
    config_mode = 0;
    log_printf( &logger, "The module has been configured.\r\n" );
    Delay_1sec( );
}

void application_task ( void )
{
    btez_process( );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.