Intermediate
30 min

Discover the future of interaction with IQS7211A and TM4C1294KCPDT

Effortless gestures, limitless results

Touchpad 4 Click with Fusion for Tiva v8

Published Aug 09, 2023

Click board™

Touchpad 4 Click

Dev. board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C1294KCPDT

Elevate your touch experience with a seamlessly integrated touchpad and microcontroller duo, where smoothness meets intelligence for unparalleled user satisfaction

A

A

Hardware Overview

How does it work?

Touchpad 4 Click is based on the IQS7211A, a tiny trackpad controller designed for multitouch applications using a projected capacitance touch panel from Azoteq. The IQS7211A is part of Azoteq’s latest ProxFusion combination sensors, a multi-sensor technology that offers capacitive sensing, Hall-effect, inductive, and temperature sensing combinations on a single integrated circuit. It allows users to control a trackpad of up to 32 channels and offers high resolution and fast response, low power consumption, and long-term activation supported by environmental tracking. It is also characterized by embedded gesture engine recognition for simple gestures (tap, swipes, hold) and built-in noise detection and filtering. On the Touchpad 4 Click front side, a clearly defined field represents a touchpad area. This area is a matrix

of conductive electrodes on the PCB, electrically isolated from each other, arranged as rows and columns of X and Y. An electrode consists of multiple diamond-shaped elements, each connected to the next with a conductive neck. The controller uses the projected capacitance charge transfer principle on the touchpad area. When a conductive object such as a human finger approaches the sense plate, the detected capacitance will decrease. Observing the measured results at various sensing points on the touchpad area enables the controller to determine proximity/hover detection and contact (touch) detection on all channels and accurately determine the coordinates on the touch area. Touchpad 4 Click communicates with MCU using a standard I2C 2-Wire interface, with a clock of

up to 1MHz in the Fast Mode. An additional ready signal, routed on the INT pin of the mikroBUS™ socket, is added, which indicates when the communication window is available. Thus, it is optimal for the response rate to use the INT pin as a communication trigger. Alongside this pin, this Click board™ has a Reset feature routed to the RST pin on the mikroBUS™ socket, which with a low logic level, puts the module into a Reset state, and with a high level, operates the module normally. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

Touchpad 4 Click top side image
Touchpad 4 Click bottom side image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

512

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PK3
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PQ4
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD2
SCL
I2C Data
PD3
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Touchpad 4 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Touchpad 4 Click driver.

Key functions:

  • touchpad4_reset - Reset function

  • touchpad4_get_touch - Read touch informations

  • touchpad_get_channels - Read channel information

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Touchpad4 Click example
 *
 * # Description
 * This example showcases ability of the device to read touch coordinates, 
 * active/inactive channels, and gesture informations.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialize host communication modules(UART and I2C)  and additional pins,
 * for device control. Then resets device and set default configuration where
 * Channels and pins are mapped and configured, and set communication with device
 * only on touch/event. In the end one of 3 examples is set;
 *
 * ## Application Task
 * There are 3 examples that shocaes ability of the device: 
 *  - Reading touch coorinates and addinal informations of touch strength, 
 *    and touch area and logging them,
 *  - Reading channel statuses and show them by logging them,
 *  - Reading gesture events and logging them;
 *
 * ### Additional Functions
 *  - void touchpad4_touch_reading ( void );
 *  - void touchpad4_channel_reading ( void );
 *  - void touchpad4_gesture_reading ( void );
 *
 * @author Luka Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "touchpad4.h"

#define TOUCHPAD4_EXAMPLE_TOUCH     1
#define TOUCHPAD4_EXAMPLE_CHANNEL   2
#define TOUCHPAD4_EXAMPLE_GESTURE   3

static touchpad4_t touchpad4;
static log_t logger;

static uint8_t example_selector = 0;

/**
 * @brief Touchpad 4 touch info example.
 * @details This function reads touch informations and logs them.
 * @return Nothing
 */
void touchpad4_touch_reading ( void );

/**
 * @brief Touchpad 4 channel example.
 * @details This function reads channel informations and logs them.
 * @return Nothing
 */
void touchpad4_channel_reading ( void );

/**
 * @brief Touchpad 4 gesture info example.
 * @details This function reads gesture informations and logs them.
 * @return Nothing
 */
void touchpad4_gesture_reading ( void );

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    touchpad4_cfg_t touchpad4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    touchpad4_cfg_setup( &touchpad4_cfg );
    TOUCHPAD4_MAP_MIKROBUS( touchpad4_cfg, MIKROBUS_1 );
    err_t init_flag = touchpad4_init( &touchpad4, &touchpad4_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    
    touchpad4_reset( &touchpad4 );

    init_flag = touchpad4_default_cfg ( &touchpad4 );
    if ( TOUCHPAD4_ERROR == init_flag ) 
    {
        log_error( &logger, " Configuration. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    
    example_selector = TOUCHPAD4_EXAMPLE_TOUCH;
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    if ( !touchpad4_get_ready( &touchpad4 ) )
    {
        switch ( example_selector )
        {
            case TOUCHPAD4_EXAMPLE_TOUCH:
            {
                touchpad4_touch_reading( );
                break;
            }
            case TOUCHPAD4_EXAMPLE_CHANNEL:
            {
                touchpad4_channel_reading( );
                break;
            }
            case TOUCHPAD4_EXAMPLE_GESTURE:
            {
                touchpad4_gesture_reading( );
                break;
            }
            default:
            {
                log_error( &logger, " Select Example" );
                break;
            }
        } 
    }
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}


void touchpad4_touch_reading ( void )
{
    touchpad4_info_t ti;
    
    touchpad4_get_touch ( &touchpad4, &ti );
    
    if ( ( ti.number_of_touches > 0 ) && ( ti.number_of_touches <= 2 ) )
    {        
        log_printf( &logger, "> X->%d\r\n> Y->%d\r\n> Strength->%u\r\n> Area->%u\r\n",  
                    ti.touches[ 0 ].x, ti.touches[ 0 ].y, ti.touches[ 0 ].strength, ti.touches[ 0 ].area );
        
        log_printf( &logger, "**************\r\n" );
    }
}

void touchpad4_channel_reading ( void )
{
    uint32_t ch_status = 0;
        
    touchpad_get_channels( &touchpad4, &ch_status );
    
    uint8_t shift = 19;
    char row[ 10 ] = { 0 };
    for ( uint8_t r = 0; r < 5; r++ )
    {
        uint8_t row_char_cnt = 6;
        for ( uint8_t y = 0; y < 4; y++ )
        {
            if (y)
                row[ row_char_cnt-- ] = '|';
            
            if ( ( ch_status >> shift ) & 1 )
            {
                row[ row_char_cnt-- ] = 'x';
            }
            else
            {
                row[ row_char_cnt-- ] = 'o';
            }
            
            shift--;
        }
        log_printf( &logger, "%s\r\n", row );
    }
    log_printf( &logger, "\r\n" );
}

void touchpad4_gesture_reading ( void )
{
    uint16_t gesture_data = 0;
    
    touchpad4_generic_read( &touchpad4, TOUCHPAD4_REG_GESTURES, &gesture_data );
    gesture_data &= 0x002F;
    
    if ( gesture_data & 0x0001 )
    {
        log_printf( &logger, " > Single Tap <\r\n" );
    }
    if ( gesture_data & 0x0002 )
    {
        log_printf( &logger, " > SPress And Hold <\r\n" );
    }
    if ( gesture_data & 0x0004 )
    {
        log_printf( &logger, " > Swipe X - <\r\n" );
    }
    if ( gesture_data & 0x0008 )
    {
        log_printf( &logger, " > Swipe X + <\r\n" );
    }
    if ( gesture_data & 0x0010 )
    {
        log_printf( &logger, " > Swipe Y + <\r\n" );
    }
    if ( gesture_data & 0x0020 )
    {
        log_printf( &logger, " > Swipe Y - <\r\n" );
    }
    
    if ( gesture_data )
    {
        log_printf( &logger, "**************\r\n" );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.