Intermediate
30 min

Make your motor-controlled projects reliable with DRV8830 and ATmega644P

Achieve optimal motor responsiveness

DC Motor 11 Click with EasyAVR v7

Published May 31, 2023

Click board™

DC Motor 11 Click

Dev.Board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega644P

Embrace brushed motor control. Control motor current limiting and current sensing using this DC motor control solution!

A

A

Hardware Overview

How does it work?

DC Motor 11 Click is based on the DRV8830, a low-voltage motor driver with a serial interface from Texas Instruments. This IC is an integrated H-Bridge driver with a current regulation circuit limiting the current through the connected load with a single resistor. A low ON resistance through the H-Bridge reduces the overall power dissipation, while an advanced control circuit injects dead-time intervals whenever the outputs change their state, preventing current shoot-throughs. The DRV8830 also integrates protection features, including undervoltage, overcurrent, and overtemperature protection. Each of these events will cause the H-Bridge MOSFETs to be disabled. After removing a fault condition, the device will continue its operation. The DRV8830 includes an internal reference voltage that is connected to a DAC. This DAC generates

a voltage that is used to set the PWM-regulated output voltage and, therefore, the speed and direction of the motor rotation. The DAC is controlled by the VSET bits from the I2C interface. For detailed commands for desired output voltages, refer to the DRV8830 datasheet. DC Motor 11 click uses the I2C interface to communicate with the main MCU and the fault pin (FLT), which is routed to the INT pin of the mikroBUS™ socket. The I2C address can be selected using additional SMD jumpers (JP1 and JP2) labeled ADDR SEL, determining the least significant bits of the DRV8830 slave I2C address. Although the DRV8830 supports up to 1A Maximum DC/RMS or Peak Drive Current Current through the connected load, it is limited to a maximum of 0.6A. A higher current will cause the overcurrent protection to be activated.

The peak current through the motor is limited to about 1A, ensuring reliable spin-up while preventing the overcurrent protection from being activated, even if a large load torque is applied. Although there is a low resistance across the H-Bridge, the current should be monitored to prevent excessive heating in situations where the load is reasonably high. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

dc-motor-11-click-hardware-overview

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

Architecture

AVR

MCU Memory (KB)

64

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

4096

You complete me!

Accessories

DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of 50g.cm. Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

DC Motor 11 Click accessories image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Fault Indicator
PD2
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC0
SCL
I2C Data
PC1
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

DC Motor 11 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
MCU DIP 40 hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for DC Motor 11 Click driver.

Key functions:

  • dcmotor11_control - Motor Control

  • dcmotor11_get_fault - Get Fault

  • dcmotor11_get_interrupt_state - Interrupt state on the INT pin

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief DcMotor11 Click example
 * 
 * # Description
 * This application is motor driver with the current limiting and current sensing.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization driver init and sets first motor settings.
 * 
 * ## Application Task  
 * Waits for valid user input and executes functions based on set of valid commands.
 * 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "dcmotor11.h"

// ------------------------------------------------------------------ VARIABLES

static dcmotor11_t dcmotor11;
static log_t logger;

uint8_t motor_speed;
uint8_t motor_dir;
uint8_t f_motor_state = 1;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor11_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor11_cfg_setup( &cfg );
    DCMOTOR11_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor11_init( &dcmotor11, &cfg );

    dcmotor11_get_fault( &dcmotor11 );
    
    // Start settings 
    motor_dir = DCMOTOR11_DIRECTION_FORWARD;
    motor_speed = DCMOTOR11_VSET_480mV;
    dcmotor11_control( &dcmotor11, DCMOTOR11_DIRECTION_FORWARD, motor_speed );
}

void application_task ( void )
{
    // Speed increase 
    motor_speed += 4;
    if ( motor_speed >= DCMOTOR11_VSET_4820mV )
    {
        log_printf( &logger, "---- MAX SPEED ---- \r\n" );
        motor_speed = DCMOTOR11_VSET_4820mV;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
    else
    {
        log_printf( &logger, "---- Speed increase ---- \r\n" );
        log_printf( &logger, " MOTOR SPEED: %d \r\n", motor_speed );
        
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms( 2000 );

    // Speed decrease 
    motor_speed -= 4;
    if ( motor_speed < DCMOTOR11_VSET_480mV )
    {
        log_printf( &logger, "---- MIN SPEED ---- \r\n" );
        motor_speed = DCMOTOR11_VSET_480mV;
    }
    else
    {
        log_printf( &logger, "---- Speed decrease ---- \r\n");
        log_printf( &logger, " MOTOR SPEED: %d \r\n", motor_speed );
        
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms( 2000 );

    // Stop / Start
    if( f_motor_state == 1 )
    {
        log_printf( &logger,"---- Stop Motor!!! ---- \r\n" );
        f_motor_state = 0;
        dcmotor11_stop( &dcmotor11 );
    }
    else
    {
        log_printf( &logger,"---- Start Motor ---- \r\n" );
        f_motor_state = 1;
        motor_speed = DCMOTOR11_VSET_480mV;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms ( 2000 );

    // Direction - Forward / Backword 
    if ( motor_dir == 2 )
    {
        log_printf( &logger,"---- Direction - [FORWARD] ---- \r\n" );
        motor_dir = 1;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
    else
    {
        log_printf( &logger,"---- Direction - [BACKWARD] ---- \r\n" );
        motor_dir = 2;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources