Intermediate
30 min

Receive real-time alerts about air quality changes using BME688 and MK64FN1M0VDC12

Your partner in humidity balance and air quality brilliance

Environment 3 Click with Clicker 2 for Kinetis

Published Aug 25, 2023

Click board™

Environment 3 Click

Dev. board

Clicker 2 for Kinetis

Compiler

NECTO Studio

MCU

MK64FN1M0VDC12

Craft environments that strike the perfect balance between comfort and health by using precise humidity and air quality data to inform your adjustments

A

A

Hardware Overview

How does it work?

Environment 3 Click is based on the BME688, air quality MEMS sensor that combines gas, humidity, temperature, and barometric pressure sensing from Bosch Sensortec. The BME688 combines reliable high-precision sensors with wide-ranging gas detection and innovative AI capabilities, enabling users to rapidly develop various applications to improve well-being, lifestyle, and sustainability. It offers reduced power consumption, improved accuracy specifications, and a configurable host interface for the fastest data transfer. It covers extended operating pressure, humidity, and temperature ranges from 300-1100hPa, 0-100%RH and from -40°C to +85°C with the accuracy of ±3%RH and ±0.5°C. The BME688 supports a full suite of operational modes, which provides vast flexibility in optimizing

the device for power consumption, resolution, and filter performance. Additionally, it also has a gas scanner function; it can detect Volatile Organic Compounds (VOCs), Volatile Sulfur Compounds (VSCs), and other gases such as carbon monoxide and hydrogen in the part per billion (ppb) range. In standard configuration, the presence of VSCs is being detected as an indicator for, e.g., bacteria growth, where the gas scanner can be customized for sensitivity, selectivity, data rate, and power consumption. Based on its main features listed above, this Click board is the best choice for indoor and outdoor air quality measurement applications, detection of unusual gases that might indicate leakage or fire, early detection of odors and bad smells, and other various temperature and humidity-related applications. Environment 3 Click

allows using both I2C and SPI interfaces. The selection can be made by positioning SMD jumpers labeled COMM SEL in an appropriate position. Note that all the jumpers' positions must be on the same side, or the Click board™ may become unresponsive. While the I2C interface is selected, the BME688 allows choosing the least significant bit (LSB) of its I2C slave address using the SMD jumper labeled ADDR SEL to an appropriate position marked as 0 or 1. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

Environment 3 Click top side image
Environment 3 Click bottom side image

Features overview

Development board

Clicker 2 for Kinetis is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4F microcontroller, the MK64FN1M0VDC12 from NXP Semiconductors, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and

features quickly. Each part of the Clicker 2 for Kinetis development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for Kinetis programming method, using a USB HID mikroBootloader or an external mikroProg connector for Kinetis programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Micro-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or

using a Li-Polymer battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for Kinetis is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Clicker 2 for Kinetis dimensions image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

NXP

Pin count

121

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PC4
CS
SPI Clock
PC5
SCK
SPI Data OUT
PC7
MISO
SPI Data IN
PC6
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD8
SCL
I2C Data
PD9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Environment 3 Click Schematic schematic

Step by step

Project assembly

Clicker 2 for PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 2 for Kinetis as your development board.

Clicker 2 for PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector Clicker 2 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Environment 3 Click driver.

Key functions:

  • environment3_get_all_data - This function reads the temperature, humidity, pressure, and gas resistance data from the sensor

  • environment3_enable_heater - This function enables or disables the gas sensor heater

  • environment3_soft_reset - This function soft-resets the sensor

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Environment3 Click example
 *
 * # Description
 * This example demonstrates the use of Environment 3 click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver, sets the default configuration, and disables the gas sensor heater.
 *
 * ## Application Task
 * Reads the temperature, humidity, pressure, and gas resistance data from the sensor and 
 * displays all values on the USB UART approximately every second.
 *
 * @note
 * The heater is disabled by default, enable it in the Application Init if you need gas resistance data.
 * Gas resistance data is RAW data, if you need VOCs, please contact Bosch Sensortec for VOC calculation library.
 * The temperature and humidity data don't represent the real environmental data when the heater is enabled.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "environment3.h"

static environment3_t environment3;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;                    /**< Logger config object. */
    environment3_cfg_t environment3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    environment3_cfg_setup( &environment3_cfg );
    ENVIRONMENT3_MAP_MIKROBUS( environment3_cfg, MIKROBUS_1 );
    err_t init_flag  = environment3_init( &environment3, &environment3_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    if ( ENVIRONMENT3_OK != environment3_default_cfg ( &environment3 ) )
    {
        log_error( &logger, " Default Config Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    
    environment3_enable_heater ( &environment3, ENVIRONMENT3_DISABLE );
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    float temperature, pressure, humidity;
    uint32_t gas_resistance;
    if ( ENVIRONMENT3_OK == environment3_get_all_data ( &environment3, 
                                                        &temperature, 
                                                        &humidity, 
                                                        &pressure, 
                                                        &gas_resistance ) )
    {
        log_printf( &logger, " Temperature : %.2f C\r\n", temperature );
    
        log_printf( &logger, " Humidity : %.2f %%\r\n", humidity );
        
        log_printf( &logger, " Pressure : %.3f mBar\r\n", pressure );
        
        if ( ENVIRONMENT3_ENABLE == environment3.gas_sett.enable )
        {
            log_printf( &logger, " Gas Resistance : %ld Ohms\r\n", gas_resistance );
            log_printf( &logger, "--------------------------------\r\n" );
        }
        else
        {
            log_printf( &logger, "--------------------------------\r\n" );
            Delay_ms( 1000 );
        }
    }
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.