Beginner
10 min

Maximize the impact of your visuals with dual green 5x7 displays using MAX7219 and MK64FN1M0VDC12

Double the display, double the impact: Green 5x7 magic!

Matrix G Click with Clicker 2 for Kinetis

Published Sep 10, 2023

Click board™

Matrix G Click

Dev. board

Clicker 2 for Kinetis

Compiler

NECTO Studio

MCU

MK64FN1M0VDC12

With a focus on efficiency and versatility, we aim to empower developers with a dual green matrix solution that delivers synchronized control over two displays, allowing for dynamic and captivating visuals

A

A

Hardware Overview

How does it work?

Matrix G Click is based on two MAX7219, serially interfaced, 8-digit LED display drivers from Analog Devices. The MAX7219 over 10MHz serial interface can address each LED of the two onboard green 5x7 matrices individually or all simultaneously. It has digital and analog brightness control, blanked display on Power-Up sequence, low-power shutdown with data retained, and more features. It also includes a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each data. Users can get four-character displays if they double

up on a board with two adjacent mikroBUS™ sockets, such as Fusion, Clicker 2, or Flip&Click. The Matrix R Click uses an SPI serial interface to communicate to the host microcontroller, with speeds of up to 10MHz. Each MAX7219's chip select pin is connected to the appropriate pin on the mikroBUS™ socket. The MAX7219 that controls the left display is connected to the pin labeled CSL, while the right is connected to the pin labeled CSR. Serial data is loaded into the shift register while the corresponding chip select pin is in a low logic state. The peak segment current is set to

around 40mA with an external resistor. The display's brightness can be controlled by the internal PWM by the software. This Click board™ can be operated only with a 5V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Matrix G Click top side image
Matrix G Click bottom side image

Features overview

Development board

Clicker 2 for Kinetis is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4F microcontroller, the MK64FN1M0VDC12 from NXP Semiconductors, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and

features quickly. Each part of the Clicker 2 for Kinetis development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for Kinetis programming method, using a USB HID mikroBootloader or an external mikroProg connector for Kinetis programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Micro-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or

using a Li-Polymer battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for Kinetis is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Clicker 2 for Kinetis dimensions image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

NXP

Pin count

121

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

Right Display SPI Chip Select
PB2
AN
NC
NC
RST
Right Display SPI Chip Select
PC4
CS
SPI Clock
PC5
SCK
SPI Data OUT
PC7
MISO
SPI Data IN
PC6
MOSI
NC
NC
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Matrix G Click Schematic schematic

Step by step

Project assembly

Clicker 2 for PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 2 for Kinetis as your development board.

Clicker 2 for PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for Matrix G Click driver.

Key functions:

  • matrixg_display_characters - This function displays the specified characters on the L/R segments of the click

  • matrixg_set_csn_high - This function sets the CSN pin output to high

  • matrixg_set_csn_low - This function sets the CSN pin output to low.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief MatrixG Click example
 *
 * # Description
 * This example showcases how to prepare the logger and Click modules for use and 
 * how to display ASCII characters on both of the LED segments of the Click.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * This function initializes and configures the logger and Click modules. After the initialization of the logger module, 
 * communication, mikrobus and pin setup, some of the registers are configured in order for the Click module to work properly.
 *
 * ## Application Task
 * This function displays two strings on each of the LED segments, showing one character every second. 
 * It should display " Mikroelektronika" on the left one and "Mikroelektronika " on the right.
 *
 * @note
 * The Click has two chips, each controlling one of the LED segments, on and requires you to write data to both at the same time. 
 * Writing to one specific chip will not work. If you wish to display characters on a single segment, you have to send ' ' characters to the other segment.
 *
 * @author Jelena Milosavljevic
 *
 */

// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "matrixg.h"

// ------------------------------------------------------------------ VARIABLES

static matrixg_t matrixg;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( ) {
   
    log_cfg_t log_cfg;
    matrixg_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    matrixg_cfg_setup( &cfg );
    MATRIXG_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    matrixg_init( &matrixg, &cfg );
    Delay_ms ( 100 );
    matrixg_default_cfg( &matrixg );
    Delay_ms ( 100 );
}

void application_task ( ) {
   
    matrixg_display_characters( &matrixg, ' ', 'M' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'M', 'i' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'i', 'k' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'k', 'r' );
    Delay_ms ( 1000);
    matrixg_display_characters( &matrixg, 'r', 'o' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'o', 'E' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'E', 'l' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'l', 'e' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'e', 'k' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'k', 't' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 't', 'r' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'r', 'o' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'o', 'n' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'n', 'i' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'i', 'k' );
    Delay_ms ( 1000 );
    matrixg_display_characters( &matrixg, 'k', 'a' );
    Delay_ms ( 100 );
    matrixg_display_characters( &matrixg, 'a', ' ' );
    Delay_ms ( 100 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.