Intermediate
30 min

Expand I/O capabilities and streamline data management with PCAL6524 and PIC32MZ1024EFE144

Versatile I/O expansion: Unlock I/O potential with ease!

Expand 10 Click with UNI Clicker

Published Oct 07, 2023

Click board™

Expand 10 Click

Dev. board

UNI Clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFE144

Transform your electronics design with our I/O expansion solution, offering a reliable and efficient means for connecting and controlling a wide range of devices and peripherals

A

A

Hardware Overview

How does it work?

Expand 10 Click is based on the PCAL6524, a 24-bit ultra-low-voltage translating general-purpose I/O expander from NXP Semiconductors. This port expander is a simple solution for when additional I/Os are needed while keeping interconnections to a minimum. It is particularly great for system monitoring applications, industrial controllers, and portable equipment. The PCAL6524 has a built-in level shifting feature that makes it highly flexible in power supply systems where communication between incompatible I/O voltages is required. The PCAL6524 implements Agile I/O features designed to enhance the I/O. These additional features are programmable output drive strength, latchable inputs, programmable

pull-up/pull-down resistors, maskable interrupt, interrupt status register, and programmable open-drain or push-pull outputs. Expand 10 Click communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings, supporting a Fast Mode Plus operation up to 1MHz. At the Power-On sequence, the I/Os are configured as inputs. However, the host MCU can enable the I/Os as inputs or outputs by writing to the I/O configuration bits. In addition to I2C communication, two GPIO pins connected to the mikroBUS™ socket pins are also used. The reset pin routed to the RST pin of the mikroBUS™ socket, is used to place the PCAL6524 registers in their default state, while the interrupt, routed

to the INT pin of the mikroBUS™ socket, may be configured as an interrupt to notify the host MCU of incoming data on any port. Besides, it also allows the choice of the least significant bit of its I2C slave address by positioning the SMD jumper labeled ADDR SEL to an appropriate position marked as 1 and 0. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Expand 10 Click top side image
Expand 10 Click bottom side image

Features overview

Development board

UNI Clicker is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It supports a wide range of microcontrollers, such as different ARM, PIC32, dsPIC, PIC, and AVR from various vendors like Microchip, ST, NXP, and TI (regardless of their number of pins), four mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a debugger/programmer connector, and two 26-pin headers for interfacing with external electronics. Thanks to innovative manufacturing technology, it allows you to build

gadgets with unique functionalities and features quickly. Each part of the UNI Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the UNI Clicker programming method, using a third-party programmer or CODEGRIP/mikroProg connected to onboard JTAG/SWD header, the UNI Clicker board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Type-C (USB-C) connector, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or using a Li-Po/Li

Ion battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board (plus USB HOST/DEVICE), including the well-established mikroBUS™ socket, a standardized socket for the MCU card (SiBRAIN standard), and several user-configurable buttons and LED indicators. UNI Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI clicker double image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

144

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PH2
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PD0
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PA2
SCL
I2C Data
PA3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Expand 10 Click Schematic schematic

Step by step

Project assembly

UNI Clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI Clicker as your development board.

UNI Clicker front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for STM32F745VG front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Expand 10 Click driver.

Key functions:

  • expand10_set_pin_direction - This function sets the direction of the selected pins

  • expand10_set_pin_value - This function sets the value of the selected pins

  • expand10_read_port_value - This function reads the value of the selected port input pins

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Expand10 Click example
 *
 * # Description
 * This example demonstrates the use of Expand 10 Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the Click default configuration which sets the first two ports
 * as output and the third port as input with pull-down enabled.
 *
 * ## Application Task
 * Sets the pins of the first two ports and then reads and displays the status of 
 * all ports on the USB UART approximately once per second.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "expand10.h"

static expand10_t expand10;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    expand10_cfg_t expand10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    expand10_cfg_setup( &expand10_cfg );
    EXPAND10_MAP_MIKROBUS( expand10_cfg, MIKROBUS_1 );
    err_t init_flag = expand10_init( &expand10, &expand10_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    
    init_flag = expand10_default_cfg ( &expand10 );
    if ( EXPAND10_ERROR == init_flag ) 
    {
        log_error( &logger, " Default Config Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    uint8_t port_value = 0;
  
    for ( uint16_t pin_num = EXPAND10_PIN_0_MASK; pin_num <= EXPAND10_PIN_7_MASK; pin_num <<= 1 )
    {
        expand10_set_all_pins_value( &expand10, pin_num );
        
        expand10_read_port_value( &expand10, EXPAND10_PORT_0, &port_value );
        log_printf( &logger, " Status P0 (output): 0x%.2X\r\n", ( uint16_t ) port_value );
        
        expand10_read_port_value( &expand10, EXPAND10_PORT_1, &port_value );
        log_printf( &logger, " Status P1 (output): 0x%.2X\r\n", ( uint16_t ) port_value );
        
        expand10_read_port_value( &expand10, EXPAND10_PORT_2, &port_value );
        log_printf( &logger, " Status P2 (input) : 0x%.2X\r\n\r\n", ( uint16_t ) port_value );
        Delay_ms ( 1000 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.