Beginner
10 min

Develop data storage and transfer solution with EN25Q80B and PIC18F57Q43

Highly reliable serial flash memory with a capacity of 8Mbits

Flash Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

Flash Click

Dev. board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Robust and reliable memory solution with a decent storage capacity, advanced write protection, and excellent endurance

A

A

Hardware Overview

How does it work?

Flash Click is based on the EN25Q80B, a serial flash memory from EON Silicon Solutions. The EN25Q80B features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve advanced information from the device, such as the operating characteristics, structure and vendor-specified information, memory size, operating voltage, timing information, and more. Page Program instruction allows up to 256 bytes to be written during one write cycle, although it is possible to write less than that. By automatically incrementing the addresses, it is possible to read the entire memory by a single command. The

EN25Q80B allows the erasure of one sector at a time, half a block at a time, block at a time, and the entire memory. The addition of 512 bytes of one-time programmable (OTP) memory can be useful for building secure storage devices and similar secure storage applications. Flash Click uses a standard 4-Wire SPI serial interface to communicate with the host MCU, supporting Dual SPI and Quad SPI modes, which utilize these two additional modes, allowing faster data transfer speeds several times. There are additional WP for the write protect function and HLD pins. If using Quad SPI, the SDI and SDO become DQ0 and

DQ1, while WP and HLD become DQ2 and DQ3, respectively. Due to a small number of MCUs that support Dual and Quad SPI, MIKROE offers library functions that work only with standard SPI communication, ensuring absolute compatibility with all the supported MCUs. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Flash Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Not Used / QSPI D3
PA7
RST
SPI Chip Select
PD4
CS
SPI Clock
PC6
SCK
SPI Data OUT / QSPI D1
PC5
MISO
SPI Data IN / QSPI D0
PC4
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect / QSPI D2
PB0
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Flash Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for Flash Click driver.

Key functions:

  • flash_write_page - Page Write function

  • flash_read_page - Page Read function

  • flash_erase_sector - Sector Erase function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file main.c
 * \brief Flash Click example
 *
 * # Description
 * This example demonstrates the use (control) of the FLASH memory.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes all necessary peripherals and pins used by Flash Click and also
 * initializes uart logger to show results.
 *
 * ## Application Task
 * Executes memory data writing, reading from the memory to verify data writing
 * operation and sector erasing to clear memory.
 *
 * ## Additional Functions
 * - Enter Data / Allows user to enter a desired data.
 * - Process Wait / Makes a delay to wait while some process be done.
 *
 * \author Nemanja Medakovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include <string.h>
#include "board.h"
#include "log.h"
#include "flash.h"

// ------------------------------------------------------------------ VARIABLES

static flash_t flash;
static log_t logger;
static uint8_t data_buf[ 30 ];
static uint8_t n_data;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void enter_data( unsigned char *buffer )
{
    uint8_t data_size;

    data_size = sizeof( data_buf );

    memset( data_buf, 0, data_size );
    n_data = 0;
    data_size--;

    while ( ( *buffer != 0 ) && ( data_size > 0 ) )
    {
        data_buf[ n_data ] = *buffer;
        buffer++;
        n_data++;
        data_size--;
    }
}

void process_wait( void )
{
    uint8_t cnt;

    for ( cnt = 0; cnt < 9; cnt++ )
    {
        Delay_ms ( 400 );
        log_printf( &logger, "****" );
    }

    log_printf( &logger, "\r\n" );
    Delay_ms ( 400 );
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init( void )
{
    flash_cfg_t flash_cfg;
    log_cfg_t log_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    
    //  Click initialization.
    flash_cfg_setup( &flash_cfg );
    FLASH_MAP_MIKROBUS( flash_cfg, MIKROBUS_1 );
    flash_init( &flash, &flash_cfg );

    //  Click reset and default configuration.
    flash_reset( &flash );
    flash_default_cfg( &flash );

    log_printf( &logger, "***  Flash Initialization Done.  ***\r\n" );
    log_printf( &logger, "************************************\r\n" );
}

void application_task( void )
{
    enter_data( "Mikroelektronika (MikroE)" );

    log_printf( &logger, "> Data content to be written: %s\r\n", data_buf );
    log_printf( &logger, "> Data writing to memory...\r\n" );
    flash_write_page( &flash, FLASH_MEM_ADDR_FIRST_PAGE_START, data_buf, n_data );
    log_printf( &logger, "> Done.\r\n" );

    memset( data_buf, 0, sizeof( data_buf ) );
    process_wait( );

    log_printf( &logger, "> Data reading from memory...\r\n" );
    flash_read_page( &flash, FLASH_MEM_ADDR_FIRST_PAGE_START, data_buf, n_data );
    log_printf( &logger, "> Done.\r\n> Read data content: %s\r\n", data_buf );

    process_wait( );

    log_printf( &logger, "> Sector erasing...\r\n" );
    flash_erase_sector( &flash, FLASH_MEM_ADDR_FIRST_SECTOR_START );
    log_printf( &logger, "> Done.\r\n" );

    process_wait( );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.