Intermediate
30 min

Always be on time with AB0815 and PIC18F57Q43

RTC: Your silent reminder in a noisy world

RTC 11 Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

RTC 11 Click

Dev Board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Integrate reliable real-time clock into your solution to enable precise event sequencing and accurate time measurement

A

A

Hardware Overview

How does it work?

RTC 11 Click is based on the AB0815, an ultra-low-power coupled with a highly sophisticated feature set, the real-time clock from Abracon. The AB0815 is a full-function RTC and includes three feature groups: baseline and advanced timekeeping features and power management. Functions from each feature group may be controlled via I/O offset mapped registers accessed through the SPI serial interface. The baseline timekeeping feature group supports the standard 32.786 kHz crystal oscillation mode for maximum frequency accuracy with an ultra-low current draw of 22nA. This feature includes standard counters for minutes, hours, dates, months, years, and weekdays. A complement of countdown timers and alarms may additionally be set to initiate interrupts or

resets on several outputs. The most common configuration on this Click board™ is a battery-backed-up RTC, which maintains time and may hold data in RAM. In addition to the AB0815, the RTC 11 Click is equipped with a button cell battery holder compatible with the 3000TR battery holder, suitable for 12mm Coin Cell batteries. By utilizing an automatic backup switch, the AB0815 can use an external battery power source when there is no power supply on its main power terminals, thus allowing for uninterrupted operation. The AB0815 communicates with MCU using the standard SPI serial interface that supports modes 0 and 3 with a maximum frequency of 2 MHz. The flexible inputs of the AB0815 can be used to aggregate various interrupt sources, including external digital inputs,

analog levels, timers, and alarms, into a single interrupt source to an MCU. Based on this, functions like external interrupt or watchdog timer reset could be found on this Click board™ routed on the RST and AN pins of the mikroBUS™ socket labeled as EXI and WDI, as well as the primary and secondary interrupt outputs routed on the INT and PWM pins of the mikroBUS™ socket labeled as IT1 and IT2. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

RTC 11 Click top side image
RTC 11 Click bottom side image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Watchdog Timer Reset
PA0
AN
External Interrupt
PA7
RST
SPI Chip Select
PD4
CS
SPI Clock
PC6
SCK
SPI Data OUT
PC5
MISO
SPI Data IN
PC4
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Secondary Interrupt
PB0
PWM
Primary Interrupt
PA6
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

RTC 11 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Barometer 13 Click front image hardware assembly
PIC18F57Q43 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Curiosity Nano with PICXXX MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for RTC 11 Click driver.

Key functions:

  • rtc11_set_time - Set time hours, minutes and seconds function

  • rtc11_get_time - Get time hours, minutes and seconds function

  • rtc11_set_date - Set date day of the week, day, month and year function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief RTC11 Click example
 *
 * # Description
 * This is an example that demonstrates the use of the RTC 11 click board™.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initalizes SPI, performs software reset, sets 
 * system time and date, and starts clocking system.
 *
 * ## Application Task
 * Demonstrates use of RTC 11 click board by reading and
 * displaying time and date via USART terminal.
 * 
 * Additional Functions :
 * 
 * void disp_day_of_the_week ( uint8_t w_day ) - Writes the day of the week on 
 * USART terminal.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "rtc11.h"

static rtc11_t rtc11;
static log_t logger;

static rtc11_time_t time;
static rtc11_date_t date;

uint8_t sec_flag = 0xFF;

void disp_day_of_the_week ( uint8_t w_day ) {
    switch ( w_day )
    {
        case 0 :
        {
            log_printf( &logger, "Monday" );
            break;
        }
        case 1 :
        {
            log_printf( &logger, "Tuesday" );
            break;
        }
        case 2 :
        {
            log_printf( &logger, "Wednesday" );
            break;
        }
        case 3 :
        {
            log_printf( &logger, "Thursday" );
            break;
        }
        case 4 :
        {
            log_printf( &logger, "Friday" );
            break;
        }
        case 5 :
        {
            log_printf( &logger, "Saturday" );
            break;
        }
        case 6 :
        {
            log_printf( &logger, "Sunday" );
            break;
        }
        default :
        {
        break;
        }
    }
}
void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    rtc11_cfg_t rtc11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    rtc11_cfg_setup( &rtc11_cfg );
    RTC11_MAP_MIKROBUS( rtc11_cfg, MIKROBUS_1 );
    err_t init_flag  = rtc11_init( &rtc11, &rtc11_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Software reset \r\n" );
    rtc11_soft_rst( &rtc11 );
    Delay_ms( 100 );
    
    time.hours = 23;
    time.min = 59;
    time.sec = 55;
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Setting time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
    rtc11_set_time ( &rtc11, time );
    Delay_ms( 100 );
    
    date.day_of_week = 0;
    date.day = 19;
    date.month = 7;
    date.year = 21;
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Setting date: %.2d/%.2d/%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
    rtc11_set_date( &rtc11, date );
    Delay_ms( 100 );
    
    rtc11_stp_sys_slk ( &rtc11, RTC11_PROP_DIS );
    log_info( &logger, " Application Task " );
    log_printf( &logger,"------------------------\r\n" );
}

void application_task ( void ) {
    rtc11_get_time ( &rtc11, &time );
    Delay_ms( 10 );
    rtc11_get_date ( &rtc11, &date );
    Delay_ms( 10 );
    
    if ( sec_flag != time.sec ) {
        log_printf( &logger, " Date: " );
        disp_day_of_the_week( date.day_of_week );
        log_printf( &logger, " %.2d/%.2d/20%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
        log_printf( &logger, " Time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
        log_printf( &logger,"--------------------------\r\n" );
    }
    sec_flag = time.sec;
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.