Intermediate
30 min

Always be on time with AB0815 and STM32F439ZI

RTC: Your silent reminder in a noisy world

RTC 11 Click with Nucleo 144 with STM32F439ZI MCU

Published Sep 17, 2024

Click board™

RTC 11 Click

Dev. board

Nucleo 144 with STM32F439ZI MCU

Compiler

NECTO Studio

MCU

STM32F439ZI

Integrate reliable real-time clock into your solution to enable precise event sequencing and accurate time measurement

A

A

Hardware Overview

How does it work?

RTC 11 Click is based on the AB0815, an ultra-low-power coupled with a highly sophisticated feature set, the real-time clock from Abracon. The AB0815 is a full-function RTC and includes three feature groups: baseline and advanced timekeeping features and power management. Functions from each feature group may be controlled via I/O offset mapped registers accessed through the SPI serial interface. The baseline timekeeping feature group supports the standard 32.786 kHz crystal oscillation mode for maximum frequency accuracy with an ultra-low current draw of 22nA. This feature includes standard counters for minutes, hours, dates, months, years, and weekdays. A complement of countdown timers and alarms may additionally be set to initiate interrupts or

resets on several outputs. The most common configuration on this Click board™ is a battery-backed-up RTC, which maintains time and may hold data in RAM. In addition to the AB0815, the RTC 11 Click is equipped with a button cell battery holder compatible with the 3000TR battery holder, suitable for 12mm Coin Cell batteries. By utilizing an automatic backup switch, the AB0815 can use an external battery power source when there is no power supply on its main power terminals, thus allowing for uninterrupted operation. The AB0815 communicates with MCU using the standard SPI serial interface that supports modes 0 and 3 with a maximum frequency of 2 MHz. The flexible inputs of the AB0815 can be used to aggregate various interrupt sources, including external digital inputs,

analog levels, timers, and alarms, into a single interrupt source to an MCU. Based on this, functions like external interrupt or watchdog timer reset could be found on this Click board™ routed on the RST and AN pins of the mikroBUS™ socket labeled as EXI and WDI, as well as the primary and secondary interrupt outputs routed on the INT and PWM pins of the mikroBUS™ socket labeled as IT1 and IT2. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

RTC 11 Click top side image
RTC 11 Click bottom side image

Features overview

Development board

Nucleo-144 with STM32F439ZI MCU board offers an accessible and adaptable avenue for users to explore new ideas and construct prototypes. It allows users to tailor their experience by selecting from a range of performance and power consumption features offered by the STM32 microcontroller. With compatible boards, the

internal or external SMPS dramatically decreases power usage in Run mode. Including the ST Zio connector, expanding ARDUINO Uno V3 connectivity, and ST morpho headers facilitate easy expansion of the Nucleo open development platform. The integrated ST-LINK debugger/programmer enhances convenience by

eliminating the need for a separate probe. Moreover, the board is accompanied by comprehensive free software libraries and examples within the STM32Cube MCU Package, further enhancing its utility and value.

Nucleo 144 with STM32F439ZI MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

2048

Silicon Vendor

STMicroelectronics

Pin count

144

RAM (Bytes)

262144

You complete me!

Accessories

Click Shield for Nucleo-144 comes equipped with four mikroBUS™ sockets, with one in the form of a Shuttle connector, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-144 board with no effort. This way, MIKROE allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. Featuring an ARM Cortex-M microcontroller, 144 pins, and Arduino™ compatibility, the STM32 Nucleo-144 board offers limitless possibilities for prototyping and creating diverse applications. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-144 board out of the box, with an additional USB cable connected to the USB mini port on the board. Simplify your project development with the integrated ST-Link debugger and unleash creativity using the extensive I/O options and expansion capabilities. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-144 board with our Click Shield for Nucleo-144, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-144 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Watchdog Timer Reset
PC0
AN
External Interrupt
PA13
RST
SPI Chip Select
PA4
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Secondary Interrupt
PC6
PWM
Primary Interrupt
PF13
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

RTC 11 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 144 with STM32F439ZI MCU as your development board.

Click Shield for Nucleo-144 accessories 1 image hardware assembly
Nucleo 144 with STM32F446ZE MCU front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
STM32F413ZH Nucleo MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for RTC 11 Click driver.

Key functions:

  • rtc11_set_time - Set time hours, minutes and seconds function

  • rtc11_get_time - Get time hours, minutes and seconds function

  • rtc11_set_date - Set date day of the week, day, month and year function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief RTC11 Click example
 *
 * # Description
 * This is an example that demonstrates the use of the RTC 11 Click board™.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initalizes SPI, performs software reset, sets 
 * system time and date, and starts clocking system.
 *
 * ## Application Task
 * Demonstrates use of RTC 11 Click board by reading and
 * displaying time and date via USART terminal.
 * 
 * Additional Functions :
 * 
 * void disp_day_of_the_week ( uint8_t w_day ) - Writes the day of the week on 
 * USART terminal.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "rtc11.h"

static rtc11_t rtc11;
static log_t logger;

static rtc11_time_t time;
static rtc11_date_t date;

uint8_t sec_flag = 0xFF;

void disp_day_of_the_week ( uint8_t w_day ) {
    switch ( w_day )
    {
        case 0 :
        {
            log_printf( &logger, "Monday" );
            break;
        }
        case 1 :
        {
            log_printf( &logger, "Tuesday" );
            break;
        }
        case 2 :
        {
            log_printf( &logger, "Wednesday" );
            break;
        }
        case 3 :
        {
            log_printf( &logger, "Thursday" );
            break;
        }
        case 4 :
        {
            log_printf( &logger, "Friday" );
            break;
        }
        case 5 :
        {
            log_printf( &logger, "Saturday" );
            break;
        }
        case 6 :
        {
            log_printf( &logger, "Sunday" );
            break;
        }
        default :
        {
        break;
        }
    }
}
void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    rtc11_cfg_t rtc11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    rtc11_cfg_setup( &rtc11_cfg );
    RTC11_MAP_MIKROBUS( rtc11_cfg, MIKROBUS_1 );
    err_t init_flag  = rtc11_init( &rtc11, &rtc11_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Software reset \r\n" );
    rtc11_soft_rst( &rtc11 );
    Delay_ms ( 100 );
    
    time.hours = 23;
    time.min = 59;
    time.sec = 55;
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Setting time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
    rtc11_set_time ( &rtc11, time );
    Delay_ms ( 100 );
    
    date.day_of_week = 0;
    date.day = 19;
    date.month = 7;
    date.year = 21;
    log_printf( &logger,"------------------------\r\n" );
    log_printf( &logger," Setting date: %.2d/%.2d/%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
    rtc11_set_date( &rtc11, date );
    Delay_ms ( 100 );
    
    rtc11_stp_sys_slk ( &rtc11, RTC11_PROP_DIS );
    log_info( &logger, " Application Task " );
    log_printf( &logger,"------------------------\r\n" );
}

void application_task ( void ) {
    rtc11_get_time ( &rtc11, &time );
    Delay_ms ( 10 );
    rtc11_get_date ( &rtc11, &date );
    Delay_ms ( 10 );
    
    if ( sec_flag != time.sec ) {
        log_printf( &logger, " Date: " );
        disp_day_of_the_week( date.day_of_week );
        log_printf( &logger, " %.2d/%.2d/20%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
        log_printf( &logger, " Time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
        log_printf( &logger,"--------------------------\r\n" );
    }
    sec_flag = time.sec;
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.