Improve your motor control experience with our brushless driver, offering unparalleled smoothness, intelligent features, and superior performance for your every need.
A
A
Hardware Overview
How does it work?
Brushless 25 Click is based on the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It is the ideal solution for applications requiring the high-speed operation of up to 3kHz of electrical speed, a very fast startup time of under 50ms for 12V to 24V BLDC motors, and fast deceleration of under 150ms. The driver's control is highly configurable through register settings stored in an onboard non-volatile EEPROM. This feature allows the device to operate as a stand-alone device once it has been configured. In addition, the MCT8316A allows a high level of monitoring, where any variable in the algorithm can be observed as an analog output via two 12-bit DACs. Brushless 25 Click uses a standard I2C 2-Wire interface that allows the host MCU to configure EEPROM settings and read detailed fault and motor state information. If a fault condition occurs, the MCT8316A will pull the FLT pin to a low logic state, with a FAULT LED as a visual presentation. The FG pin is used as a motor speed indicator and provides pulses proportional to motor speed. For connecting the
three-phase BLDC motor, this Click board™ features the half-bridge output CBA screw terminal and a VM terminal for an external motor power supply. The RST pin can set the motor driver to sleep mode by turning all MOSFETs OFF. There are three switches to control the connected motor manually. The speed can be controlled by a PWM or analog value, which can be selected via the SPEED CTRL switch. The PWM signal can be set over the corresponding pin of the mikroBUS™ socket, while the analog value can be set over the MCP4161, an 8-bit, single SPI digital potentiometer with non-volatile memory from Microchip. The motor driver expects up to 95KHz of PWM frequency or an analog voltage in 732μV resolution. In addition, this is also a way to wake up the motor driver from sleep mode. The DIR switch changes the direction of the motor spinning with 0 and 1 positions. The low position (0) sets the phase driving sequence as ABC, while the high position (1) sets the ACB sequence. The I2C interface can overwrite this input. The Brake switch also has two states, with high entering the brake state. The MCT8316A will decrease the
output speed to the threshold value and stay in the brake state as long as this switch is in a high position. This input also can be overwritten by the I2C interface. In addition, the Brushless 25 Click comes with two headers above the mikroBUS™ socket for some optional feature additions. The VBK pin on the right-side unpopulated header is an output voltage pin from the internal buck regulator for some external loads. Other pins on this header are for monitoring algorithm variables and phase current feedback through DAC and SOX pins (the SOX pin can also be configured as one of the DAC pins). On the left is an unpopulated header with E_WD and E_CLK signals acting as the external clock reference and watchdog input pins. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
Nucleo-64 with STM32F091RC MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin
headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is
provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.
Microcontroller Overview
MCU Card / MCU
Architecture
ARM Cortex-M0
MCU Memory (KB)
256
Silicon Vendor
STMicroelectronics
Pin count
64
RAM (Bytes)
32768
You complete me!
Accessories
Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.
Brushless DC (BLDC) Motor with a Hall sensor represents a high-performance motor from the 42BLF motor series. This motor, wired in a star configuration, boasts a Hall Effect angle of 120°, ensuring precise and reliable performance. With a compact motor length of 47mm and a lightweight design tipping the scales at just 0.29kg, this BLDC motor is engineered to meet your needs. Operating flawlessly at a voltage rating of 24VDC and a speed range of 4000 ± 10% RPM, this motor offers consistent and dependable power. It excels in a normal operational temperature range from -20 to +50°C, maintaining efficiency with a rated current of 1.9A. Also, this product seamlessly integrates with all Brushless Click boards™ and those that require BLDC motors with Hall sensors.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Schematic
Step by step
Project assembly
Track your results in real time
Application Output via Debug Mode
1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.
2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.
Software Support
Library Description
This library contains API for Brushless 25 Click driver.
Key functions:
brushless25_register_write
- Brushless 25 data writing function.brushless25_register_read
- Brushless 25 data reading function.brushless25_set_speed_value
- Brushless 25 set speed function.
Open Source
Code example
This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.
/*!
* @file main.c
* @brief Brushless 25 Click example
*
* # Description
* Application example shows the device's capability of controlling
* the brushless motor speed and state of the driver.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver, sets the device into slow start mode
* and sets the speed of the motor to 30%.
*
* ## Application Task
* This example is taking track of the state of the driver and motor, as well as its
* voltage and speed which is changing from 30% to 100%, and logging it onto the USB UART terminal.
*
* @author Stefan Ilic
*
*/
#include "board.h"
#include "log.h"
#include "brushless25.h"
static brushless25_t brushless25;
static log_t logger;
uint8_t sw_data = 0;
uint8_t speed_val = 3;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
brushless25_cfg_t brushless25_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
brushless25_cfg_setup( &brushless25_cfg );
BRUSHLESS25_MAP_MIKROBUS( brushless25_cfg, MIKROBUS_1 );
err_t init_flag = brushless25_init( &brushless25, &brushless25_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( BRUSHLESS25_ERROR == brushless25_default_cfg ( &brushless25 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
uint32_t tmp_data = 0;
uint16_t spd_data = 0;
uint16_t voltage_data = 0;
brushless25_register_read( &brushless25, BRUSHLESS25_REG_SYS_STATUS2, &tmp_data );
tmp_data &= BRUSHLESS25_STATE_MASK;
switch ( tmp_data )
{
case BRUSHLESS25_STATE_SYSTEM_IDLE:
{
log_info( &logger, " System is idle " );
break;
}
case BRUSHLESS25_STATE_MOTOR_START:
{
log_info( &logger, " Motor is starting " );
break;
}
case BRUSHLESS25_STATE_MOTOR_RUN:
{
log_info( &logger, " Motor is running" );
if ( ( speed_val < 10 ) && ( sw_data == 0 ) )
{
speed_val++;
if ( speed_val == 10 )
{
sw_data = 1;
}
}
else if ( ( speed_val > 3 ) && ( sw_data == 1 ) )
{
speed_val--;
if ( speed_val == 3 )
{
sw_data = 0;
}
}
break;
}
case BRUSHLESS25_STATE_MOTOR_ALIGN:
{
log_info( &logger, " Motor is aligning " );
break;
}
case BRUSHLESS25_STATE_MOTOR_IDLE:
{
log_info( &logger, " Motor is in idle mode " );
break;
}
case BRUSHLESS25_STATE_MOTOR_STOP:
{
log_info( &logger, " Motor is stoped " );
brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
break;
}
case BRUSHLESS25_STATE_FAULT:
{
log_error( &logger, " Fault accured " );
brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
for ( ; ; );
}
case BRUSHLESS25_STATE_MOTOR_BRAKE:
{
log_info( &logger, " Motor brake is on " );
brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_OFF );
break;
}
default:
{
break;
}
}
brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );
Delay_ms ( 1000 );
brushless25_register_read( &brushless25, BRUSHLESS25_REG_SYS_STATUS2, &tmp_data );
spd_data = ( uint16_t ) tmp_data / 10;
brushless25_register_read( &brushless25, BRUSHLESS25_REG_SYS_STATUS1, &tmp_data );
voltage_data = ( ( uint16_t ) ( tmp_data >> 16 ) / 10 );
log_printf( &logger, " Motor speed: %d Hz \r\n", spd_data );
log_printf( &logger, " Motor voltage: %d V \r\n", voltage_data );
log_printf( &logger, " --------------------- \r\n" );
Delay_ms ( 1000 );
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END