Beginner
10 min

Extend the battery life of non-rechargeable primary batteries with NBM7100A and STM32C031C6

Coin-cell battery-life booster with adaptive power optimization

BATT Boost 2 Click with Nucleo 64 with STM32C031C6 MCU

Published Oct 09, 2024

Click board™

BATT Boost 2 Click

Dev Board

Nucleo 64 with STM32C031C6 MCU

Compiler

NECTO Studio

MCU

STM32C031C6

Extend battery life in low-power devices with smart power management perfect for IoT sensors, industrial devices, and wearables

A

A

Hardware Overview

How does it work?

BATT Boost 2 Click is based on the NBM7100A, a coin-cell battery-life booster with adaptive power optimization from Nexperia, designed to extend the battery life of non-rechargeable, primary batteries in low-voltage, low-power applications. This innovative solution is specifically designed to address the voltage drops and battery life limitations typically associated with high pulse current demands from primary batteries like the CR2032 coin cell attached to the back of the board. The NBM7100A's adaptive learning algorithm monitors the system's energy consumption and optimizes the internal DC-DC conversion process to manage the remaining charge in the storage capacitor efficiently, reducing energy waste. This makes BATT Boost 2 Click ideal for powering wireless IoT sensors, industrial devices, and wearable consumer electronics where efficient battery usage is crucial, especially in applications with high internal battery impedance and frequent bursts of power demand. As mentioned, the NBM7100A integrates two high-efficiency DC-DC conversion stages and employs an intelligent learning algorithm to maximize the usable capacity of primary batteries. The first stage draws energy at a low, steady current from the battery and stores it in a capacitor. This stored energy is then released

during the second stage of DC-DC conversion to supply a stable, regulated voltage with high pulse load capability on the VDH output terminal. This design allows the device to handle bursts of current, up to 200mA, without directly taxing the battery with large pulse currents, ensuring a longer, more predictable battery lifespan. In addition to the VDH terminal, BATT Boost 2 Click features another output labeled VDP, which serves as a 'permanent' supply terminal with a maximum output current of 5mA. The VDP terminal is ideal for powering 'Always-ON' system components, such as the core and I/O of a host MCU. On the power supply side, the main power supply for the NBM7100A can be sourced either from the 3.3V mikroBUS™ socket or the attached coin battery on the back of the board, with the selection made via the VBAT SEL jumper. The NBM7100A offers three distinct operating modes: Continuous, On-demand, and Auto mode. Continuous mode suits applications requiring immediate pulse load capability, ensuring the system can respond quickly to power demands. On-demand mode, on the other hand, is optimized for extending battery life in low-duty cycle applications, where the system remains in sleep mode for extended periods. Auto mode automates the process of managing power transitions between

charging and active states without requiring constant oversight from the serial bus, using a HIGH logic level from the ON pin on the mikroBUS™ socket for control. BATT Boost 2 Click uses a standard 2-wire I2C communication protocol, allowing the host MCU to control the NBM7100A, modify default configuration settings, and retrieve system information. The I2C interface supports clock frequencies up to 1MHz, with the device address selectable via the ADDR SEL jumper, which can be set to either position 0 or 1, corresponding to I2C addresses 0x2E or 0x2F. Additionally, several pins from the mikroBUS™ socket are used for further control of the NBM7100A: the ON pin manages the above-mentioned Auto mode, while the RDY pin provides a HIGH logic signal indicating that the NBM7100A is ready to deliver full power to the connected load. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

BATT Boost 2 Click hardware overview image

Features overview

Development board

Nucleo-64 with STM32C031C6 MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32C031C6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

12K

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Auto Mode Control
PC12
RST
ID COMM
PB12
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Status Indicator
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

BATT Boost 2 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32C031C6 MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for BATT Boost 2 Click driver.

Key functions:

  • battboost2_set_vset - This function is used to control the output voltage levels of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click.

  • battboost2_high_impedance_mode - This function is used to configures the VDH high-impedance mode in Standby and Active states of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click.

  • battboost2_set_on_pin_state - This function sets the desired states of the ON (RST) pin of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief BATT Boost 2 Click example
 *
 * # Description
 * This library contains API for the BATT Boost 2 Click driver.
 * This driver provides the functions to control battery energy management 
 * device designed to maximize usable capacity from non-rechargeable.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of I2C module and log UART.
 * After driver initialization, the app executes a default configuration, 
 * sets the output voltage to 1.8V, charge current to 16mA, 
 * and early warning voltage to 2.6V.
 *
 * ## Application Task
 * This example demonstrates the use of the BATT Boost 2 Click board. 
 * The demo application uses two operations in two states: 
 * the charging state and the active state. First, when the device is in a Charge state, 
 * the external storage capacitor is charging from VBT using a constant current 
 * and displays storage capacitor voltage levels and charge cycle count.
 * Upon completion of a Charge state, the device transitions to the Active state 
 * at which time VDH becomes a regulated voltage output of 1.8V (default configuration), 
 * displays storage capacitor voltage level, and monitors alarms 
 * for low output voltage (below 1.8V) and early warning (below 2.4V). 
 * Results are being sent to the UART Terminal, where you can track their changes.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "battboost2.h"

static battboost2_t battboost2;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    battboost2_cfg_t battboost2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    battboost2_cfg_setup( &battboost2_cfg );
    BATTBOOST2_MAP_MIKROBUS( battboost2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == battboost2_init( &battboost2, &battboost2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BATTBOOST2_ERROR == battboost2_default_cfg ( &battboost2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

void application_task ( void ) 
{
    float vcap = 0;
    uint8_t status = 0;
    uint32_t chenergy = 0;

    if ( BATTBOOST2_STATUS_READY != battboost2_get_ready( &battboost2 ) )
    {
        if ( BATTBOOST2_OK == battboost2_set_op_mode( &battboost2, BATTBOOST2_OP_MODE_CHARGE ) )
        {
            log_printf( &logger, "\nOperating state: Charge\r\n" );
        }

        if ( BATTBOOST2_OK == battboost2_get_vcap( &battboost2, &vcap ) )
        {
            log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
        }

        if ( BATTBOOST2_OK == battboost2_get_chenergy( &battboost2, &chenergy ) )
        {
            log_printf( &logger, " Charge cycle count: %lu \r\n", chenergy );
        }
        Delay_ms ( 1000 );
    }
    else
    {
        if ( BATTBOOST2_OK == battboost2_set_op_mode( &battboost2, BATTBOOST2_OP_MODE_ACTIVE ) )
        {
            log_printf( &logger, "\nOperating state: Active\r\n" );
            if ( BATTBOOST2_OK == battboost2_get_vcap( &battboost2, &vcap ) )
            {
                log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
            }

            if ( BATTBOOST2_OK == battboost2_get_status( &battboost2, &status ) )
            {
                if ( BATTBOOST2_STATUS_EW & status )
                {
                    log_printf( &logger, " Status: Early warning.\r\n" );
                }

                if ( BATTBOOST2_STATUS_ALRM & status )
                {
                    log_printf( &logger, " Status: Low output voltage in the Active state.\r\n" );
                }
            }
        }
        Delay_ms ( 1000 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.