Unleash the full potential of your analog signals as they transform into a realm of digital clarity, setting new standards in signal conversion.
A
A
Hardware Overview
How does it work?
ADC 23 Click is based on the ADS127L11, a wide-bandwidth 24-bit delta-sigma analog-to-digital converter from Texas Instruments. The digital filter is configurable for wide or low-latency operation, optimizing wideband AC performance or data throughput for DC signals. It is optimized to provide high resolution with low power consumption. The delta-sigma demodulator produces low-resolution, high-frequency data, after which the noise is removed. The digital filter simultaneously decimates and filters the modulator data, thus providing the high-resolution final output data. The ADS127L11 integrates input and reference buffers to reduce signal loading. You can choose onboard ADR4525, an ultralow noise high-accuracy voltage reference
from Analog Devices for a reference voltage. Or you can choose an external one over the VEXT header. The selection can be made over the VREF SEL jumper. The internal voltage reference of 2.5V is set by default. The ADC can operate with an external clock or an internal oscillator. The nominal value of the clock is 25.6MHz in high-speed mode and 3.2MHz in low-speed mode. You can add an external oscillator over the CLK header. The analog input of the ADC is differential, with the input defined as a difference voltage, and you should drive the input with a differential signal for the best performance. For this purpose, the ADC 23 Click is equipped with two SMA connectors. ADC 23 Click uses a standard 4-Wire SPI serial interface to communicate with the host MCU, supporting
SPI mode 1. The ADC can be reset over the RST pin. The start STR pin synchronizes the digital process, and if the STR pin is in a HIGH logic state, the ADC immediately begins conversions with the data-ready DRY pin pulsing for each conversion. The latency is defined as the time from synchronization to the falling edge of the DRY pin. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Features overview
Development board
Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The
board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,
and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.
Microcontroller Overview
MCU Card / MCU

Architecture
ARM Cortex-M0
MCU Memory (KB)
32
Silicon Vendor
STMicroelectronics
Pin count
32
RAM (Bytes)
4096
You complete me!
Accessories
Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for ADC 23 Click driver.
Key functions:
adc23_get_voltage
- ADC 23 read get voltage level function.adc23_read_conversion_data
- ADC 23 read conversion data function.adc23_start_conversion
- ADC 23 start conversion function.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief ADC 23 Click example
*
* # Description
* This example demonstrates the use of the ADC 23 Click board™
* by reading and writing data by using SPI serial interface and reading results of AD conversion.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization of SPI module and log UART.
* After driver initialization, the app executes a default configuration.
*
* ## Application Task
* The demo application reads the voltage levels from analog input and displays the results.
* Results are being sent to the UART Terminal, where you can track their changes.
*
* @author Nenad Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "adc23.h"
static adc23_t adc23;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
adc23_cfg_t adc23_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
adc23_cfg_setup( &adc23_cfg );
ADC23_MAP_MIKROBUS( adc23_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == adc23_init( &adc23, &adc23_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( ADC23_ERROR == adc23_default_cfg ( &adc23 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms( 100 );
}
void application_task ( void )
{
static float voltage = 0.0;
if ( ADC23_OK == adc23_get_voltage( &adc23, &voltage ) )
{
log_printf( &logger, " Voltage : %.2f [mV]\r\n", voltage );
Delay_ms( 1000 );
}
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END